login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171191
G.f. satisfies: A(x) = exp( Sum_{n>=1} [A(x)^n + 1/A(-x)^n]*x^n/n ).
2
1, 2, 7, 20, 73, 263, 1111, 4451, 20161, 85304, 401401, 1755593, 8465311, 37866818, 185756605, 844627115, 4196759383, 19321634594, 96962969047, 450810982796, 2280344734891, 10686378006479, 54406554842287, 256637809742444
OFFSET
0,2
FORMULA
G.f. satisfies: A(x) = 1/[(1 - x*A(x))*(1 - x/A(-x))]. - Paul D. Hanna, Dec 06 2009
EXAMPLE
G.f.: A(x) = 1 + 2*x + 7*x^2 + 20*x^3 + 73*x^4 + 263*x^5 + 1111*x^6 + ...
log(A(x)) = [A(x)+1/A(-x)]*x + [A(x)^2+1/A(-x)^2]*x^2/2 + [A(x)^3+1/A(-x)^3]*x^3/3 + ...
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, (A^m+subst(A^-m, x, -x)+x*O(x^n))*x^m/m))); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=(1-x*A+x*O(x^n))^-1*(1-x/subst(A, x, -x)+x*O(x^n))^-1); polcoeff(A, n)} \\ Paul D. Hanna, Dec 06 2009
CROSSREFS
Sequence in context: A029890 A095268 A118397 * A189771 A260504 A009697
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 05 2009
STATUS
approved