login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260504
Number of chains in the poset of all odd-sized subsets of {1,2,...,n} ordered by inclusion.
2
0, 1, 2, 7, 20, 91, 362, 2227, 11720, 92491, 608222, 5866147, 46290620, 527635291, 4857587282, 63886537267, 672183848720, 10019232896491, 118594819341542, 1975680877259587, 25983971598078020, 478434297205284091, 6921555837554655002, 139581878985127217107
OFFSET
0,3
FORMULA
E.g.f.: (s^2 + s*c + s)/(1 - c) where s = sinh(x) and c = cosh(x) - 1.
a(n) ~ n! * (sqrt(3)+2 + (-1)^n*(sqrt(3)-2)) / log(2+sqrt(3))^(n+1). - Vaclav Kotesovec, Jul 27 2015
EXAMPLE
a(4) = 20 because there are C(4,1) + C(4,3) = 8 chains of length zero (these are the odd-sized subsets of {1,2,3,4}. There are 12 chains of length one: {{1},{1,2,3}}; {{1},{1,2,4}}; {{1},{1,3,4}}; {{2},{1,2,3}}; {{2},{1,2,4}}; {{2},{2,3,4}}; {{3},{1,2,3}}; {{3},{1,3,4}}; {{3},{2,3,4}}; {{4},{1,2,4}}; {{4},{1,3,4}}; {{4},{2,3,4}}.
MAPLE
# Assuming a(0) = 1:
p := proc(n, z) option remember; local k; if n = 0 then 1 else
normal(add(`if`(k mod 2 = 1, 0, binomial(n, k)*p(k, 0)*(z+1)^(n-k-1)), k=0..n-1))
fi end: A260504 := n -> p(n, 1): seq(A260504(n), n = 0..23); # Peter Luschny, Jun 19 2023
MATHEMATICA
nn = 20; c=Cosh[x]-1; s=Sinh[x]; Range[0, nn]!CoefficientList[Series[(s^2 + s c + s)/(1 - c), {x, 0, nn}], x]
CROSSREFS
Sequence in context: A118397 A171191 A189771 * A009697 A139012 A132605
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Jul 27 2015
STATUS
approved