OFFSET
0,3
FORMULA
Sum_{n>=0} a(n) * x^n / (n!)^2 = BesselJ(0,2*sqrt(x)) / (1 - x)^2.
MAPLE
a:= n-> n!^2 * add((-1)^k*(n-k+1)/k!^2, k=0..n):
seq(a(n), n=0..20); # Alois P. Heinz, Jan 27 2021
MATHEMATICA
Table[n!^2 Sum[(-1)^(n - k) (k + 1)/(n - k)!^2, {k, 0, n}], {n, 0, 17}]
nmax = 17; CoefficientList[Series[BesselJ[0, 2 Sqrt[x]]/(1 - x)^2, {x, 0, nmax}], x] Range[0, nmax]!^2
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 27 2021
STATUS
approved