login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196659
G.f.: A(x) = INV(x - x*INV(x - 3*x*INV(x - 5*x*INV(x - 7*x*INV(x - ...))))), where INV(F(x)) = series reversion of F(x).
0
1, 1, 5, 53, 917, 22617, 735033, 29953065, 1479692909, 86472860573, 5868283305245, 455754185294737, 40032598733260945, 3938398783862213521, 430402127790139060725, 51882414924375353368677, 6856582955062676722110885, 988136808489380086666701225
OFFSET
1,3
EXAMPLE
G.f.: A(x) = x + x^2 + 5*x^3 + 53*x^4 + 917*x^5 + 22617*x^6 +...
where A(x) results from nested inversions of shifted series:
A(x) = Series_Reversion(x - x*B(x)), where
B(x) = x + 3*x^2 + 33*x^3 + 615*x^4 + 16149*x^5 + 550431*x^6 +...;
B(x) = Series_Reversion(x - 3*x*C(x)), where
C(x) = x + 5*x^2 + 85*x^3 + 2305*x^4 + 83685*x^5 + 3776885*x^6 +...;
C(x) = Series_Reversion(x - 5*x*D(x)), where
D(x) = x + 7*x^2 + 161*x^3 + 5747*x^4 + 268037*x^5 + 15199611*x^6 +...;
D(x) = Series_Reversion(x - 7*x*E(x)), where
E(x) = x + 9*x^2 + 261*x^3 + 11565*x^4 + 660213*x^5 + 45228753*x^6 +...;
E(x) = Series_Reversion(x - 9*x*F(x)), where
F(x) = x + 11*x^2 + 385*x^3 + 20383*x^4 + 1377717*x^5 + 110795927*x^6 +...;
F(x) = Series_Reversion(x - 11*x*G(x)), where
G(x) = x + 13*x^2 + 533*x^3 + 32825*x^4 + 2564549*x^5 + 236963181*x^6 +...;
G(x) = Series_Reversion(x - 13*x*H(x)), where
H(x) = x + 15*x^2 + 705*x^3 + 49515*x^4 + 4391205*x^5 + 458531955*x^6 +...; ...
PROG
(PARI) {a(n)=local(G=x+x^2); for(k=0, n, G=serreverse(x-(2*n-2*k+1)*x*G+x^2*O(x^n))); polcoeff(G, n)}
CROSSREFS
Cf. A195194.
Sequence in context: A357343 A377323 A231866 * A128943 A180351 A337151
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 05 2011
STATUS
approved