login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015083
Carlitz-Riordan q-Catalan numbers (recurrence version) for q=2.
44
1, 1, 3, 17, 171, 3113, 106419, 7035649, 915028347, 236101213721, 121358941877763, 124515003203007345, 255256125633703622475, 1046039978882750301409545, 8571252355254982356001107795, 140448544236464264647066322058465, 4602498820363674769217316088142020635
OFFSET
0,3
COMMENTS
Limit_{n->inf} a(n)/2^((n-1)(n-2)/2) = Product{k>=1} 1/(1-1/2^k) = 3.462746619455... (cf. A065446). - Paul D. Hanna, Jan 24 2005
It appears that the Hankel transform is 2^A002412(n). - Paul Barry, Aug 01 2008
Hankel transform of aerated sequence is A125791. - Paul Barry, Dec 15 2010
LINKS
J. Fürlinger, J. Hofbauer, q-Catalan numbers, Journal of Combinatorial Theory, Series A, Volume 40, Issue 2, November 1985, Pages 248-264.
Robin Sulzgruber, The Symmetry of the q,t-Catalan Numbers, Thesis, University of Vienna, 2013.
FORMULA
a(n+1) = Sum_{i=0..n} q^i*a(i)*a(n-i) with q=2 and a(0)=1.
G.f. satisfies: A(x) = 1 / (1 - x*A(2*x)) = 1/(1-x/(1-2*x/(1-2^2*x/(1-2^3*x/(1-...))))) (continued fraction). - Paul D. Hanna, Jan 24 2005
G.f. satisfies: A(x) = Sum_{n>=0} Product_{k=0..n-1} 2^k*x*A(2^k*x). - Paul D. Hanna, May 17 2010
a(n) = the upper left term in M^(n-1), M = the infinite square production matrix:
1, 2, 0, 0, 0, ...
1, 2, 4, 0, 0, ...
1, 2, 4, 8, 0, ...
1, 2, 4, 8, 16, ...
...
Also, a(n+1) = sum of top row terms of M^(n-1). Example: top row of M^3 = (17, 34, 56, 64, 0, 0, 0, ...); where a(4) = 17 and a(5) = 171 = (17 + 34 + 56 + 64). - Gary W. Adamson, Jul 14 2011
G.f.: T(0), where T(k) = 1 - x*(2^k)/(x*(2^k) - 1/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 17 2013
EXAMPLE
G.f. = 1 + x + 3*x^2 + 17*x^3 + 171*x^4 + 3113*x^5 + 106419*x^6 + 7035649*x^7 + ...
From Seiichi Manyama, Dec 05 2016: (Start)
a(1) = 1,
a(2) = 2^1 + 1 = 3,
a(3) = 2^3 + 2^2 + 2*2^1 + 1 = 17,
a(4) = 2^6 + 2^5 + 2*2^4 + 3*2^3 + 3*2^2 + 3*2^1 + 1 = 171. (End)
MATHEMATICA
a[n_] := a[n] = Sum[2^i*a[i]*a[n - i - 1], {i, 0, n - 1}];
a[0] = 1; Array[a, 16, 0] (* Robert G. Wilson v, Dec 24 2016 *)
m = 17; ContinuedFractionK[If[i == 1, 1, -2^(i-2) x], 1, {i, 1, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Nov 17 2019 *)
PROG
(PARI) a(n)=if(n==0, 1, sum(i=0, n-1, 2^i*a(i)*a(n-1-i))) \\ Paul D. Hanna
(PARI) {a(n) = my(A); if( n<1, n==0, A = vector(n, i, 1); for(k=0, n-1, A[k+1] = if( k<1, 1, A[k]*(1+2^k) + sum(i=1, k-1, 2^i * A[i] * A[k-i]))); A[n])}; /* Michael Somos, Jan 30 2005 */
(PARI) {a(n) = my(A); if( n<0, 0, A = O(x); for(k=1, n, A = 1 / (1 - x * subst(A, x, 2*x))); polcoeff(A, n))}; /* Michael Somos, Jan 30 2005 */
(Ruby)
def A(q, n)
ary = [1]
(1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + q ** j * ary[j] * ary[i - 1 - j]}}
ary
end
def A015083(n)
A(2, n)
end # Seiichi Manyama, Dec 24 2016
CROSSREFS
Cf. A015108 (q=-11), A015107 (q=-10), A015106 (q=-9), A015105 (q=-8), A015103 (q=-7), A015102 (q=-6), A015100 (q=-5), A015099 (q=-4), A015098 (q=-3), A015097 (q=-2), A090192 (q=-1), A000108 (q=1), this sequence (q=2), A015084 (q=3), A015085 (q=4), A015086 (q=5), A015089 (q=6), A015091 (q=7), A015092 (q=8), A015093 (q=9), A015095 (q=10), A015096 (q=11).
Column k=2 of A090182, A290759.
Sequence in context: A375836 A069856 A214346 * A263460 A053934 A159592
KEYWORD
nonn
EXTENSIONS
Offset changed to 0 by Seiichi Manyama, Dec 05 2016
STATUS
approved