login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159592
G.f.: Sum_{n>=0} a(n)*x^n/2^(n(n-1)/2) = exp( Sum_{n>=1} A(x/2^n)^n*x^n/n ).
1
1, 1, 3, 17, 177, 3491, 133261, 9917307, 1443008813, 411772442315, 231163433300285, 255964900099068155, 560177408302962464013, 2427068640913282843197355, 20848444510025384551575108829
OFFSET
0,3
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2/2 + 17*x^3/2^3 + 177*x^4/2^6 + 3491*x^5/2^10 +...
log(A(x)) = A(x/2)*x + A(x/4)^2*x^2/2 + A(x/8)^3*x^3/3 + A(x/16)^4*x^4/4 +...
PROG
(PARI) {a(n)=local(A=1+x); for(n=2, n, A=exp(sum(k=1, n, subst(A, x, x/2^k+x*O(x^n))^k*x^k/k))); 2^(n*(n-1)/2)*polcoeff(A, n)}
CROSSREFS
Cf. A157675.
Sequence in context: A015083 A263460 A053934 * A126443 A054976 A304863
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 02 2009
STATUS
approved