OFFSET
1,3
FORMULA
G.f.: A(x) = x*exp( Sum_{n>=1} [ Sum_{k>=1} k^n*a(k)*x^k ]^n/n ) where A(x) = Sum_{k>=1} a(k)*x^k.
EXAMPLE
G.f.: A(x) = x + x^2 + 3*x^3 + 16*x^4 + 125*x^5 + 1301*x^6 +...
A(x) = x*exp( Sum_{n>=1} [x + 2^n*a(2)*x^2 + 3^n*a(3)*x^3 +...]^n/n ).
D^n A(x) = x + 2^n*x^2 + 3^n*3*x^3 + 4^n*16*x^4 + 5^n*125*x^5 +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=x*exp(sum(m=1, n, sum(k=1, n, k^m*x^k*polcoeff(A, k)+x*O(x^n))^m/m))); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 03 2009
STATUS
approved