login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159594
G.f.: A(x) = x*exp( Sum_{n>=1} [ D^n A(x) ]^n/n ), where differential operator D = x*d/dx.
0
1, 1, 3, 16, 125, 1301, 17070, 272976, 5218727, 118508219, 3224104875, 108226321884, 4740041705554, 291705715765328, 26728599026539162, 3688459631229579912, 751246585455211054713, 208348432365596381718906
OFFSET
1,3
FORMULA
G.f.: A(x) = x*exp( Sum_{n>=1} [ Sum_{k>=1} k^n*a(k)*x^k ]^n/n ) where A(x) = Sum_{k>=1} a(k)*x^k.
EXAMPLE
G.f.: A(x) = x + x^2 + 3*x^3 + 16*x^4 + 125*x^5 + 1301*x^6 +...
A(x) = x*exp( Sum_{n>=1} [x + 2^n*a(2)*x^2 + 3^n*a(3)*x^3 +...]^n/n ).
D^n A(x) = x + 2^n*x^2 + 3^n*3*x^3 + 4^n*16*x^4 + 5^n*125*x^5 +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=x*exp(sum(m=1, n, sum(k=1, n, k^m*x^k*polcoeff(A, k)+x*O(x^n))^m/m))); polcoeff(A, n)}
CROSSREFS
Sequence in context: A000951 A000272 A246527 * A246525 A193242 A247591
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 03 2009
STATUS
approved