The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A159596 G.f.: A(x) = exp( Sum_{n>=1} [ D^n x/(1-x)^2 ]^n/n ), where differential operator D = x*d/dx. 4
 1, 1, 5, 22, 121, 863, 8476, 118131, 2361313, 67467236, 2731757961, 156417295405, 12605225573076, 1432381581679361, 229016092616239411, 51628631138952017332, 16402709158903948390585, 7351149638643155728435357 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Conjecture: limit_{n->oo} a(n)^(1/n^2) = 2^(1/4). - Vaclav Kotesovec, Nov 17 2023 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..113 FORMULA G.f.: A(x) = exp( Sum_{n>=1} [Sum_{k>=1} k^(n+1)*x^k]^n/n ) where A(x) = Sum_{k>=1} a(k)*x^k. EXAMPLE G.f.: A(x) = 1 + x + 5*x^2 + 22*x^3 + 121*x^4 + 863*x^5 +... log(A(x)) = Sum_{n>=1} [x + 2^(n+1)*x^2 + 3^(n+1)*x^3 +...]^n/n. D^n x/(1-x)^2 = x + 2^(n+1)*x^2 + 3^(n+1)*x^3 + 4^(n+1)*x^4 +... PROG (PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(k=1, n, k^(m+1)*x^k+x*O(x^n))^m/m))); polcoeff(A, n)} CROSSREFS Cf. A156170, A159597, A159598. Sequence in context: A326341 A062794 A036235 * A020077 A265998 A203265 Adjacent sequences: A159593 A159594 A159595 * A159597 A159598 A159599 KEYWORD nonn AUTHOR Paul D. Hanna, May 05 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 15 00:37 EDT 2024. Contains 374323 sequences. (Running on oeis4.)