login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A159596 G.f.: A(x) = exp( Sum_{n>=1} [ D^n x/(1-x)^2 ]^n/n ), where differential operator D = x*d/dx. 3
1, 1, 5, 22, 121, 863, 8476, 118131, 2361313, 67467236, 2731757961, 156417295405, 12605225573076, 1432381581679361, 229016092616239411, 51628631138952017332, 16402709158903948390585, 7351149638643155728435357 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..17.

FORMULA

G.f.: A(x) = exp( Sum_{n>=1} [Sum_{k>=1} k^(n+1)*x^k]^n/n ) where A(x) = Sum_{k>=1} a(k)*x^k.

EXAMPLE

G.f.: A(x) = 1 + x + 5*x^2 + 22*x^3 + 121*x^4 + 863*x^5 +...

log(A(x)) = Sum_{n>=1} [x + 2^(n+1)*x^2 + 3^(n+1)*x^3 +...]^n/n.

D^n x/(1-x)^2 = x + 2^(n+1)*x^2 + 3^(n+1)*x^3 + 4^(n+1)*x^4 +...

PROG

(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(k=1, n, k^(m+1)*x^k+x*O(x^n))^m/m))); polcoeff(A, n)}

CROSSREFS

Cf. A156170, A159597, A159598.

Sequence in context: A131460 A062794 A036235 * A020077 A265998 A203265

Adjacent sequences:  A159593 A159594 A159595 * A159597 A159598 A159599

KEYWORD

nonn

AUTHOR

Paul D. Hanna, May 05 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 9 20:00 EST 2016. Contains 278986 sequences.