login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159599
E.g.f.: A(x) = exp( Sum_{n>=1} [ D^n exp(x) ]^n/n ), where differential operator D = x*d/dx.
0
1, 1, 4, 27, 304, 5685, 177486, 9305821, 807656872, 113141689065, 25091265489130, 8644033129800321, 4584172093683770820, 3704744323753306881229, 4538175408875808587259022, 8381136688938251234193247485
OFFSET
0,3
FORMULA
E.g.f.: A(x) = exp( Sum_{n>=1} [ Sum_{k>=1} k^n*x^k/k! ]^n/n ).
EXAMPLE
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 27*x^3/3! + 304*x^4/4! +...
log(A(x)) = x + 3*x^2/2! + 17*x^3/3! + 190*x^4/4! + 3889*x^5/5! +...
log(A(x)) = (D^1 e^x) + (D^2 e^x)^2/2 + (D^3 e^x)^3/3 +...
D^1 exp(x) = (1)*x*exp(x);
D^2 exp(x) = (1 + x)*x*exp(x);
D^3 exp(x) = (1 + 3*x + x^2)*x*exp(x);
D^4 exp(x) = (1 + 7*x + 6*x^2 + x^3)*x*exp(x);
D^5 exp(x) = (1 + 15*x + 25*x^2 + 10*x^3 + x^4)*x*exp(x); ...
D^n exp(x) = n-th iteration of operator D = x*d/dx on exp(x) equals the g.f. of the n-th row of triangle A008277 (S2(n,k)) times x*exp(x), and so is related to the n-th Bell number.
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(k=1, n, k^m*x^k/k!+x*O(x^n))^m/m))); n!*polcoeff(A, n)}
CROSSREFS
Cf. A159596, A008277 (S2(n, k)), A000110 (Bell).
Sequence in context: A304340 A336227 A119820 * A221411 A304654 A203202
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 05 2009, May 22 2009
STATUS
approved