Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Sep 14 2013 14:08:42
%S 1,1,4,27,304,5685,177486,9305821,807656872,113141689065,
%T 25091265489130,8644033129800321,4584172093683770820,
%U 3704744323753306881229,4538175408875808587259022,8381136688938251234193247485
%N E.g.f.: A(x) = exp( Sum_{n>=1} [ D^n exp(x) ]^n/n ), where differential operator D = x*d/dx.
%F E.g.f.: A(x) = exp( Sum_{n>=1} [ Sum_{k>=1} k^n*x^k/k! ]^n/n ).
%e E.g.f.: A(x) = 1 + x + 4*x^2/2! + 27*x^3/3! + 304*x^4/4! +...
%e log(A(x)) = x + 3*x^2/2! + 17*x^3/3! + 190*x^4/4! + 3889*x^5/5! +...
%e log(A(x)) = (D^1 e^x) + (D^2 e^x)^2/2 + (D^3 e^x)^3/3 +...
%e D^1 exp(x) = (1)*x*exp(x);
%e D^2 exp(x) = (1 + x)*x*exp(x);
%e D^3 exp(x) = (1 + 3*x + x^2)*x*exp(x);
%e D^4 exp(x) = (1 + 7*x + 6*x^2 + x^3)*x*exp(x);
%e D^5 exp(x) = (1 + 15*x + 25*x^2 + 10*x^3 + x^4)*x*exp(x); ...
%e D^n exp(x) = n-th iteration of operator D = x*d/dx on exp(x) equals the g.f. of the n-th row of triangle A008277 (S2(n,k)) times x*exp(x), and so is related to the n-th Bell number.
%o (PARI) {a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1,n, sum(k=1,n,k^m*x^k/k!+x*O(x^n))^m/m))); n!*polcoeff(A,n)}
%Y Cf. A159596, A008277 (S2(n, k)), A000110 (Bell).
%K nonn
%O 0,3
%A _Paul D. Hanna_, May 05 2009, May 22 2009