login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247591
Dimension of invariants of 2n-th tensor power of 6-dimensional irreducible representation of A_3.
0
1, 1, 3, 16, 126, 1296, 16071, 228514, 3607890, 61891050, 1135871490, 22049362440, 448790912004, 9512960347260, 208858963314735, 4728736078065810, 110006925920592810, 2621619942885055530, 63840054782606886630, 1585094577104979776880, 40054740803371374834780, 1028483346608802276173280
OFFSET
0,3
COMMENTS
The 6-dimensional representation is the usual representation of SO(6)=A_3.
FORMULA
a(n) = (-36*(n-1)*(2*n-3)*(2*n-1)*a(n-2) + 4*n*(2*n-1)*(5*n+7)*a(n-1)) / ((n+2)*(n+3)^2).
a(n) = (9*(n+1)*A005802(n)-(n+5)*A005802(n+1))*binomial(2*n,n)/(2*(n+1)*(n+2)). - Mark van Hoeij, Nov 12 2023
EXAMPLE
For 2n=6, there are 15 invariants corresponding to all ways of pairing the 6 indices with the metric tensor, plus one invariant which is the completely skew-symmetric 6-index tensor.
MATHEMATICA
a[0] = 1; a[1] = 1; a[n_] := a[n] = (4*n*(2*n-1)*(5*n+7)*a[n-1] - 36*(n-1)*(2*n-3)*(2*n-1)*a[n-2]) / ((n+2)*(n+3)^2); Table[a[n], {n, 0, 21}]
PROG
(PARI) N=66; v=vector(N); v[1]=1; v[2]=1;
for(n=2, N-1, my(t=n+1); v[t] = (-36*(n-1)*(2*n-3)*(2*n-1)*v[t-2] + 4*n*(2*n-1)*(5*n+7)*v[t-1]) / ((n+2)*(n+3)^2) );
v \\ Joerg Arndt, Sep 20 2014
CROSSREFS
Sequence in context: A159594 A246525 A193242 * A188805 A214645 A296535
KEYWORD
nonn
AUTHOR
Paul Zinn-Justin, Sep 20 2014
STATUS
approved