login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126443
a(n) = Sum_{k=0..n-1} C(n-1,k)*a(k)*2^k for n>0, with a(0)=1.
11
1, 1, 3, 17, 179, 3489, 127459, 8873137, 1195313043, 315321098561, 164239990789571, 169810102632595281, 349630019758589841523, 1436268949679165936016097, 11784559509424676876673518499, 193243076262167105764611875139569
OFFSET
0,3
COMMENTS
Generated by a generalization of a recurrence for the Bell numbers (A000110).
Starting with offset 1 = eigensequence of triangle A013609. - Gary W. Adamson, Sep 04 2009
LINKS
FORMULA
a(n) = Sum_{k=0..n*(n-1)/2} A126347(n,k)*2^k.
G.f. A(x) satisfies: A(x) = 1 + x*A(2*x/(1 - x))/(1 - x). - Ilya Gutkovskiy, Sep 02 2019
a(n) ~ c * 2^(n*(n-1)/2), where c = A081845 = 4.7684620580627434482997985... - Vaclav Kotesovec, Sep 16 2019
PROG
(PARI) a(n)=if(n==0, 1, sum(k=0, n-1, binomial(n-1, k)*a(k)*2^k))
CROSSREFS
Cf. A013609. - Gary W. Adamson, Sep 04 2009
Column k=2 of A306245.
Sequence in context: A263460 A053934 A159592 * A054976 A304863 A163886
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 01 2007
STATUS
approved