|
|
A126445
|
|
Triangle, read by rows, where T(n,k) = C(C(n+2,3) - C(k+2,3), n-k) for n >= k >= 0.
|
|
10
|
|
|
1, 1, 1, 6, 3, 1, 120, 36, 6, 1, 4845, 969, 120, 10, 1, 324632, 46376, 4495, 300, 15, 1, 32468436, 3478761, 270725, 15180, 630, 21, 1, 4529365776, 377447148, 24040016, 1150626, 41664, 1176, 28, 1, 840261910995, 56017460733, 2967205528, 122391522, 3921225, 98770, 2016, 36, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
Amazingly, A126460 = A126445^-1*A126450 = A126450^-1*A126454 = A126454^-1*A126457; and also A126465 = A126450*A126445^-1 = A126454*A126450^-1 = A126457*A126454^-1.
|
|
LINKS
|
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
|
|
FORMULA
|
T(n,k) = C(n*(n+1)*(n+2)/3! - k*(k+1)*(k+2)/3!, n-k) for n >= k >= 0.
|
|
EXAMPLE
|
Formula: T(n,k) = C(C(n+2,3) - C(k+2,3), n-k) is illustrated by:
T(n=4,k=1) = C(C(6,3) - C(3,3), n-k) = C(19,3) = 969;
T(n=4,k=2) = C(C(6,3) - C(4,3), n-k) = C(16,2) = 120;
T(n=5,k=2) = C(C(7,3) - C(4,3), n-k) = C(31,3) = 4495.
Triangle begins:
1;
1, 1;
6, 3, 1;
120, 36, 6, 1;
4845, 969, 120, 10, 1;
324632, 46376, 4495, 300, 15, 1;
32468436, 3478761, 270725, 15180, 630, 21, 1;
4529365776, 377447148, 24040016, 1150626, 41664, 1176, 28, 1;
|
|
MATHEMATICA
|
T[n_, k_]:= Binomial[Binomial[n+2, 3] - Binomial[k+2, 3], n-k];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 18 2022 *)
|
|
PROG
|
(PARI) T(n, k)=binomial(n*(n+1)*(n+2)/3!-k*(k+1)*(k+2)/3!, n-k)
(Sage)
def A126445(n, k): return binomial(binomial(n+2, 3) - binomial(k+2, 3), n-k)
flatten([[A126445(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 18 2022
|
|
CROSSREFS
|
Columns: A126446, A126447, A126448, A126449 (row sums).
Variants: A107862, A126450, A126454, A126457.
Sequence in context: A182227 A108451 A122178 * A277435 A033326 A068996
Adjacent sequences: A126442 A126443 A126444 * A126446 A126447 A126448
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
Paul D. Hanna, Dec 27 2006
|
|
STATUS
|
approved
|
|
|
|