login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126454
Triangle, read by rows, where T(n,k) = C( C(n+2,3) - C(k+2,3) + 2, n-k) for n>=k>=0.
8
1, 3, 1, 15, 5, 1, 220, 55, 8, 1, 7315, 1330, 153, 12, 1, 435897, 58905, 5456, 351, 17, 1, 40475358, 4187106, 316251, 17296, 703, 23, 1, 5373200880, 437353560, 27285336, 1282975, 45760, 1275, 30, 1, 962889794295, 63140314380, 3295144749, 134153712
OFFSET
0,2
COMMENTS
FORMULA
T(n,k) = C( n*(n+1)*(n+2)/3! - k*(k+1)*(k+2)/3! + 2, n-k) for n>=k>=0.
EXAMPLE
Formula: T(n,k) = C( C(n+2,3) - C(k+2,3) + 2, n-k) is illustrated by:
T(n=4,k=1) = C( C(6,3) - C(3,3) + 2, n-k) = C(21,3) = 1330;
T(n=4,k=2) = C( C(6,3) - C(4,3) + 2, n-k) = C(18,2) = 153;
T(n=5,k=2) = C( C(7,3) - C(4,3) + 2, n-k) = C(33,3) = 5456.
Triangle begins:
1;
3, 1;
15, 5, 1;
220, 55, 8, 1;
7315, 1330, 153, 12, 1;
435897, 58905, 5456, 351, 17, 1;
40475358, 4187106, 316251, 17296, 703, 23, 1;
5373200880, 437353560, 27285336, 1282975, 45760, 1275, 30, 1; ...
MATHEMATICA
Table[Binomial[Binomial[n+2, 3]-Binomial[k+2, 3]+2, n-k], {n, 0, 10}, {k, 0, n}]// Flatten (* Harvey P. Dale, Dec 17 2020 *)
PROG
(PARI) T(n, k)=binomial(n*(n+1)*(n+2)/3!-k*(k+1)*(k+2)/3!+2, n-k)
CROSSREFS
Columns: A126455, A126456; variants: A126445, A126450, A126457, A107870.
Sequence in context: A119301 A293157 A121335 * A293558 A259841 A228540
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Dec 27 2006
STATUS
approved