OFFSET
1,2
COMMENTS
First in a series of triangular arrays which comprise subsequences of A096443(n).
The second array begins 9 16 26 29 52 92 47 98 198 371 and when the arrays are aligned as illustrated in triangle A126441 with p(n) values they sum to A035310 which counts unordered multisets.
Let t(n, k) be the number of ways to partition the k-multiset {0,0,...,0,1,2,3,4,...,k-n} with n zeros, 0 <= n < k. Then t(n, k) = sum_i = 0..k j = 0..n S(n, j) C(i, j) p(k - n - i), where S(n, j) are Stirling numbers of the second kind, C(i, j) are the number of compositions of i distinct objects into j parts, and p is the integer partition function.
To see this, partition [n] into j blocks; there are S(n, j) partitions. For such a partition x and for each i, there are C(i, j) ways to distribute i zeros into x, because the blocks of x are all distinct. There are p(k-n-i) ways to partition the remaining k-n-i zeros. Multiplying and summing gives the result. - George Beck, Jan 10 2011
Values are also part of A096443, A129306 and A249620. Columns are also columns of the last one of these irregular triangles. See "Partitions_of_multisets" link. - Tilman Piesk, Nov 09 2014
LINKS
Tilman Piesk, Partitions of multisets (Wikiversity)
EXAMPLE
MATHEMATICA
(* The triangle is flattened to a sequence. *)
t[n_, k_] := Sum[StirlingS2[n, j] * Binomial[-1 + i + j, i] * PartitionsP[k - n - i], {j, 0, n}, {i, 0, k - n}]; Table[ t[n, k], {k, 10}, {n, 0, k - 1}] // Flatten (* George Beck, Jan 10 2011 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alford Arnold, Jan 28 2007
EXTENSIONS
Definition clarified by George Beck, Jan 11 2011
STATUS
approved