login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A093802
Number of distinct factorizations of 105*2^n.
5
5, 15, 36, 74, 141, 250, 426, 696, 1106, 1711, 2593, 3852, 5635, 8118, 11548, 16231, 22577, 31092, 42447, 57464, 77213, 103009, 136529, 179830, 235514, 306751, 397506, 512607, 658030, 841020, 1070490, 1357195, 1714274, 2157539, 2706174, 3383187, 4216358
OFFSET
0,1
LINKS
EXAMPLE
105*A000079 is 105, 210, 420, 840, 1680, 3360, ... and there are 15 distinct factorizations of 210 so a(1) = 15.
a(0) = 5: 105*2^0 = 105 = 3*5*7 = 3*35 = 5*21 = 7*15. - Alois P. Heinz, May 26 2013
MAPLE
with(numtheory):
b:= proc(n, k) option remember;
`if`(n>k, 0, 1) +`if`(isprime(n), 0,
add(`if`(d>k, 0, b(n/d, d)), d=divisors(n) minus {1, n}))
end:
a:= n-> b((105*2^n)$2):
seq(a(n), n=0..50); # Alois P. Heinz, May 26 2013
MATHEMATICA
b[n_, k_] := b[n, k] = If[n > k, 0, 1] + If[PrimeQ[n], 0,
Sum[If[d > k, 0, b[n/d, d]], {d, Divisors[n][[2;; -2]]}]];
a[n_] := b[105*2^n, 105*2^n];
Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jul 15 2021, after Alois P. Heinz *)
CROSSREFS
Similar sequences: 45*A000079 => A002763, [1, 3, 9, 27, 81, 243...]*A000079 => A054225, 1*A002110 => A000110, 2*A002110 => A035098, A000142 => A076716.
Column k=3 of A346426.
Sequence in context: A184631 A366971 A011933 * A006008 A325952 A086716
KEYWORD
easy,nonn
AUTHOR
Alford Arnold, May 19 2004
EXTENSIONS
2 more terms from Alford Arnold, Aug 29 2007
Corrected offset and extended beyond a(7) by Alois P. Heinz, May 26 2013
STATUS
approved