login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002763 Number of bipartite partitions.
(Formerly M3414 N1380)
3
4, 11, 26, 52, 98, 171, 289, 467, 737, 1131, 1704, 2515, 3661, 5246, 7430, 10396, 14405, 19760, 26884, 36269, 48583, 64614, 85399, 112170, 146526, 190362, 246099, 316621, 405556, 517224, 657012, 831320, 1048055, 1316611, 1648486, 2057324, 2559719, 3175309 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

REFERENCES

M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956, p. 11.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..300

M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956 (Annotated scanned pages from, plus a review)

FORMULA

a(n) = a(n-1) + A000041(n) + A000070(n) + A000291(n), for n>0 - Alford Arnold, Dec 10 2007

From Vaclav Kotesovec, Jan 07 2017: (Start)

G.f.: (4 - x - 3*x^2 + x^3) / ((1-x)^3 * (1+x)) * Product_{k>=1} 1/(1-x^k).

a(n) ~ exp(Pi*sqrt(2*n/3)) * 3*sqrt(n)/(2*sqrt(2)*Pi^3).

(End)

MAPLE

with(numtheory):

b:= proc(n, k) option remember;

      `if`(n>k, 0, 1) +`if`(isprime(n), 0,

      add(`if`(d>k, 0, b(n/d, d)), d=divisors(n) minus {1, n}))

    end:

a:= n-> b((45*2^n)$2):

seq(a(n), n=0..50);  # Alois P. Heinz, May 26 2013

MATHEMATICA

b[n_, k_] := b[n, k] = If[n>k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d>k, 0, b[n/d, d]], {d, DeleteCases[Divisors[n], 1|n]}]]; a[n_] := b[45*2^n, 45*2^n]; Table[a[n], {n, 0, 50}] (* Jean-Fran├žois Alcover, Mar 20 2014, after Alois P. Heinz *)

nmax = 100; CoefficientList[Series[(4 - x - 3*x^2 + x^3) / ((1 - x)^3 * (1 + x)) / Product[1 - x^k, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 07 2017 *)

CROSSREFS

Cf. A082775, A129306.

Sequence in context: A008263 A297149 A159944 * A077270 A076048 A109414

Adjacent sequences:  A002760 A002761 A002762 * A002764 A002765 A002766

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

EXTENSIONS

Extended beyond a(25) by Alois P. Heinz, May 26 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 5 17:29 EDT 2020. Contains 335473 sequences. (Running on oeis4.)