login
A109414
a(n) equals the (n*(n+1)/2)-th partial sum of the self-convolution cube of A010054, which has the g.f.: Sum_{k>=0} x^(k*(k+1)/2).
2
1, 4, 11, 26, 54, 90, 151, 232, 326, 456, 612, 811, 1030, 1304, 1607, 1953, 2383, 2812, 3329, 3893, 4515, 5226, 5983, 6809, 7703, 8718, 9762, 10891, 12160, 13475, 14868, 16380, 17986, 19699, 21524, 23415, 25482, 27658, 29923, 32288, 34814, 37452
OFFSET
0,2
FORMULA
a(n) = [x^(n*(n+1)/2)] [Sum_{k>=0} x^(k*(k+1)/2)]^3/(1-x).
PROG
(PARI) {a(n)=local(X=x+x*O(x^(n*(n+1)/2))); polcoeff((eta(X^2)^2/eta(X))^3/(1-X), n*(n+1)/2)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 27 2005
STATUS
approved