login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027966
T(n, 2*n-4), T given by A027960.
3
1, 4, 11, 26, 54, 101, 174, 281, 431, 634, 901, 1244, 1676, 2211, 2864, 3651, 4589, 5696, 6991, 8494, 10226, 12209, 14466, 17021, 19899, 23126, 26729, 30736, 35176, 40079, 45476, 51399, 57881, 64956, 72659, 81026, 90094, 99901, 110486, 121889, 134151, 147314, 161421, 176516, 192644
OFFSET
2,2
FORMULA
From Ralf Stephan, Feb 07 2004: (Start)
G.f.: x^2*(1 - x + x^2 + x^3 - x^4)/(1-x)^5.
Differences of A027967. (End)
From G. C. Greubel, Jun 30 2019: (Start)
a(n) = (n^4 + 2*n^3 - 25*n^2 + 94*n - 96)/24.
E.g.f.: (96 +24*x - (96 - 72*x + 12*x^2 - 8*x^3 - x^4)*exp(x))/24. (End)
MATHEMATICA
LinearRecurrence[{5, -10, 10, -5, 1}, {1, 4, 11, 26, 54}, 50] (* G. C. Greubel, Jun 30 2019 *)
PROG
(PARI) vector(50, n, n++; (n^4+2*n^3-25*n^2+94*n-96)/24) \\ G. C. Greubel, Jun 30 2019
(Magma) [(n^4+2*n^3-25*n^2+94*n-96)/24: n in [2..50]]; // G. C. Greubel, Jun 30 2019
(Sage) [(n^4+2*n^3-25*n^2+94*n-96)/24 for n in (2..50)] # G. C. Greubel, Jun 30 2019
(GAP) List([2..50], n-> (n^4+2*n^3-25*n^2+94*n-96)/24) # G. C. Greubel, Jun 30 2019
CROSSREFS
A column of triangle A026998.
Sequence in context: A077270 A076048 A109414 * A141534 A320852 A192961
KEYWORD
nonn,easy
EXTENSIONS
Terms a(31) onward added by G. C. Greubel, Jun 30 2019
STATUS
approved