OFFSET
3,1
LINKS
G. C. Greubel, Table of n, a(n) for n = 3..1000
Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
FORMULA
From Ralf Stephan, Feb 07 2004: (Start)
G.f.: x^3*(3-2*x)*(1-3*x+5*x^2-3*x^3+x^4)/(1-x)^6.
Differences of A027968. (End)
From G. C. Greubel, Jun 30 2019: (Start)
a(n) = (840 - 736*n + 300*n^2 - 45*n^3 + n^5)/120.
E.g.f.: (-120*(7 + 3*x + x^2) + (840 - 480*x + 180*x^2 - 20*x^3 + 10*x^4 + x^5)*exp(x))/120. (End)
MATHEMATICA
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {3, 7, 18, 44, 98, 199}, 50] (* G. C. Greubel, Jun 30 2019 *)
PROG
(PARI) for(n=3, 50, print1((840-736*n+300*n^2-45*n^3+n^5)/120, ", ")) \\ G. C. Greubel, Jun 30 2019
(Magma) [(840-736*n+300*n^2-45*n^3+n^5)/120: n in [3..50]]; // G. C. Greubel, Jun 30 2019
(Sage) [(840-736*n+300*n^2-45*n^3+n^5)/120 for n in (3..50)] # G. C. Greubel, Jun 30 2019
(GAP) List([3..50], n-> (840-736*n+300*n^2-45*n^3+n^5)/120) G. C. Greubel, Jun 30 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Terms a(37) onward added by G. C. Greubel, Jun 30 2019
STATUS
approved