login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A027967 T(n, 2*n-5), T given by A027960. 3
3, 7, 18, 44, 98, 199, 373, 654, 1085, 1719, 2620, 3864, 5540, 7751, 10615, 14266, 18855, 24551, 31542, 40036, 50262, 62471, 76937, 93958, 113857, 136983, 163712, 194448, 229624, 269703, 315179, 366578, 424459, 489415, 562074, 643100, 733194, 833095, 943581, 1065470, 1199621 (list; graph; refs; listen; history; text; internal format)
OFFSET

3,1

LINKS

G. C. Greubel, Table of n, a(n) for n = 3..1000

Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).

FORMULA

From Ralf Stephan, Feb 07 2004: (Start)

G.f.: x^3*(3-2*x)*(1-3*x+5*x^2-3*x^3+x^4)/(1-x)^6.

Differences of A027968. (End)

From G. C. Greubel, Jun 30 2019: (Start)

a(n) = (840 - 736*n + 300*n^2 - 45*n^3 + n^5)/120.

E.g.f.: (-120*(7 + 3*x + x^2) + (840 - 480*x + 180*x^2 - 20*x^3 + 10*x^4 + x^5)*exp(x))/120. (End)

MATHEMATICA

LinearRecurrence[{6, -15, 20, -15, 6, -1}, {3, 7, 18, 44, 98, 199}, 50] (* G. C. Greubel, Jun 30 2019 *)

PROG

(PARI) for(n=3, 50, print1((840-736*n+300*n^2-45*n^3+n^5)/120, ", ")) \\ G. C. Greubel, Jun 30 2019

(MAGMA) [(840-736*n+300*n^2-45*n^3+n^5)/120: n in [3..50]]; // G. C. Greubel, Jun 30 2019

(Sage) [(840-736*n+300*n^2-45*n^3+n^5)/120 for n in (3..50)] # G. C. Greubel, Jun 30 2019

(GAP) List([3..50], n-> (840-736*n+300*n^2-45*n^3+n^5)/120) G. C. Greubel, Jun 30 2019

CROSSREFS

A column of triangle A027011.

Sequence in context: A036670 A262321 A182995 * A181306 A178035 A000226

Adjacent sequences:  A027964 A027965 A027966 * A027968 A027969 A027970

KEYWORD

nonn

AUTHOR

Clark Kimberling

EXTENSIONS

Terms a(37) onward added by G. C. Greubel, Jun 30 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 15 13:27 EDT 2020. Contains 336504 sequences. (Running on oeis4.)