login
A027967
T(n, 2*n-5), T given by A027960.
3
3, 7, 18, 44, 98, 199, 373, 654, 1085, 1719, 2620, 3864, 5540, 7751, 10615, 14266, 18855, 24551, 31542, 40036, 50262, 62471, 76937, 93958, 113857, 136983, 163712, 194448, 229624, 269703, 315179, 366578, 424459, 489415, 562074, 643100, 733194, 833095, 943581, 1065470, 1199621
OFFSET
3,1
FORMULA
From Ralf Stephan, Feb 07 2004: (Start)
G.f.: x^3*(3-2*x)*(1-3*x+5*x^2-3*x^3+x^4)/(1-x)^6.
Differences of A027968. (End)
From G. C. Greubel, Jun 30 2019: (Start)
a(n) = (840 - 736*n + 300*n^2 - 45*n^3 + n^5)/120.
E.g.f.: (-120*(7 + 3*x + x^2) + (840 - 480*x + 180*x^2 - 20*x^3 + 10*x^4 + x^5)*exp(x))/120. (End)
MATHEMATICA
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {3, 7, 18, 44, 98, 199}, 50] (* G. C. Greubel, Jun 30 2019 *)
PROG
(PARI) for(n=3, 50, print1((840-736*n+300*n^2-45*n^3+n^5)/120, ", ")) \\ G. C. Greubel, Jun 30 2019
(Magma) [(840-736*n+300*n^2-45*n^3+n^5)/120: n in [3..50]]; // G. C. Greubel, Jun 30 2019
(Sage) [(840-736*n+300*n^2-45*n^3+n^5)/120 for n in (3..50)] # G. C. Greubel, Jun 30 2019
(GAP) List([3..50], n-> (840-736*n+300*n^2-45*n^3+n^5)/120) G. C. Greubel, Jun 30 2019
CROSSREFS
A column of triangle A027011.
Sequence in context: A369200 A262321 A182995 * A181306 A178035 A000226
KEYWORD
nonn,easy
EXTENSIONS
Terms a(37) onward added by G. C. Greubel, Jun 30 2019
STATUS
approved