login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A027964
T(n,n+4), T given by A027960.
6
1, 7, 26, 73, 174, 373, 743, 1404, 2552, 4506, 7784, 13226, 22193, 36889, 60882, 99947, 163430, 266455, 433495, 704150, 1142496, 1852212, 3001056, 4860468, 7869649, 12739243, 20619098, 33369709, 54001422, 87385081
OFFSET
4,2
FORMULA
G.f.: x^4*(1+2*x)/((1-x)^4*(1-x-x^2)). - Ralf Stephan, Feb 07 2004
MATHEMATICA
Drop[CoefficientList[Series[x^4*(1+2*x)/((1-x)^4*(1-x-x^2)), {x, 0, 40}], x], 4] (* G. C. Greubel, Jun 29 2019 *)
PROG
(PARI) my(x='x+O('x^40)); Vec(x^4*(1+2*x)/((1-x)^4*(1-x-x^2))) \\ G. C. Greubel, Jun 29 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x^4*(1+2*x)/((1-x)^4*(1-x-x^2)) )); // G. C. Greubel, Jun 29 2019
(Sage) a=(x^4*(1+2*x)/((1-x)^4*(1-x-x^2))).series(x, 40).coefficients(x, sparse=False); a[4:] # G. C. Greubel, Jun 29 2019
CROSSREFS
Sequence in context: A053346 A227021 A180669 * A183957 A078501 A247557
KEYWORD
nonn
STATUS
approved