OFFSET
0,4
COMMENTS
LINKS
Harvey P. Dale, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (4,-5,2,-1,2,-1).
FORMULA
a(n) = a(n-1)+a(n-2)+a(n-3)+4*(n-2)^2+2 with a(0)=0, a(1)=0 and a(2)=1.
a(n) = a(n-1)+A001590(n+5)-2-4*n with a(0)=0.
a(n+2) = Sum_{k=0..floor(n/2)} A008288(n-k+3,k+3).
GF(x) = (x^2*(1+x)^3)/((1-x)^3*(1-x-x^2-x^3)).
From Bruno Berselli, Sep 23 2010: (Start)
a(n) = 3*a(n-1)-2a(n-2)-a(n-4)+a(n-5)+8 for n>4.
a(n)-4*a(n-1)+5a(n-2)-2*a(n-3)+a(n-4)-2*a(n-5)+a(n-6) = 0 for n>5. (End)
MAPLE
nmax:=30: a(0):=0: a(1):=0: a(2):=1: for n from 3 to nmax do a(n):= a(n-1)+a(n-2)+a(n-3)+4*(n-2)^2+2 od: seq(a(n), n=0..nmax);
MATHEMATICA
nxt[{n_, a_, b_, c_}]:={n+1, b, c, a+b+c+4n(n-2)+6}; NestList[nxt, {2, 0, 0, 1}, 30][[;; , 2]] (* or *) LinearRecurrence[{4, -5, 2, -1, 2, -1}, {0, 0, 1, 7, 26, 72}, 40] (* Harvey P. Dale, Jul 13 2024 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Johannes W. Meijer, Sep 21 2010
STATUS
approved