login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089068
a(n) = a(n-1)+a(n-2)+a(n-3)+2 with a(0)=0, a(1)=0 and a(2)=1.
10
0, 0, 1, 3, 6, 12, 23, 43, 80, 148, 273, 503, 926, 1704, 3135, 5767, 10608, 19512, 35889, 66011, 121414, 223316, 410743, 755475, 1389536, 2555756, 4700769, 8646063, 15902590, 29249424, 53798079, 98950095, 181997600, 334745776, 615693473
OFFSET
0,4
COMMENTS
The a(n+2) represent the Kn12 and Kn22 sums of the square array of Delannoy numbers A008288. See A180662 for the definition of these knight and other chess sums. - Johannes W. Meijer, Sep 21 2010
FORMULA
a(n) = A008937(n-2)+A008937(n-1). - Johannes W. Meijer, Sep 21 2010
a(n) = A018921(n-5)+A018921(n-4), n>4. - Johannes W. Meijer, Sep 21 2010
a(n) = A000073(n+2)-1. - R. J. Mathar, Sep 22 2010
From Johannes W. Meijer, Sep 22 2010: (Start)
a(n) = a(n-1)+A001590(n+1).
a(n) = Sum_{m=0..n} A040000(m)*A000073(n-m).
a(n+2) = Sum_{k=0..floor(n/2)} A008288(n-k+1,k+1).
G.f. = x^2*(1+x)/((1-x)*(1-x-x^2-x^3)). (End)
a(n) = 2*a(n-1)-a(n-4), a(0)=0, a(1)=0, a(2)=1, a(3)=3. - Bruno Berselli, Sep 23 2010
MATHEMATICA
Join[{a=0, b=0, c=1}, Table[d=a+b+c+2; a=b; b=c; c=d, {n, 50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 19 2011 *)
RecurrenceTable[{a[0]==a[1]==0, a[2]==1, a[n]==a[n-1]+a[n-2]+a[n-3]+2}, a[n], {n, 40}] (* or *) LinearRecurrence[{2, 0, 0, -1}, {0, 0, 1, 3}, 40] (* Harvey P. Dale, Sep 19 2011 *)
CROSSREFS
Cf. A000073 (Kn11 & Kn21), A089068 (Kn12 & Kn22), A180668 (Kn13 & Kn23), A180669 (Kn14 & Kn24), A180670 (Kn15 & Kn25). - Johannes W. Meijer, Sep 21 2010
Sequence in context: A328609 A227681 A055244 * A018180 A079735 A341580
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Dec 03 2003
EXTENSIONS
Corrected and information added by Johannes W. Meijer, Sep 22 2010, Oct 22, 2010
Definition based on arbitrarily set floating-point precision removed - R. J. Mathar, Sep 30 2010
STATUS
approved