login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180671
a(n) = Fibonacci(n+6) - Fibonacci(6).
5
0, 5, 13, 26, 47, 81, 136, 225, 369, 602, 979, 1589, 2576, 4173, 6757, 10938, 17703, 28649, 46360, 75017, 121385, 196410, 317803, 514221, 832032, 1346261, 2178301, 3524570, 5702879, 9227457, 14930344, 24157809, 39088161, 63245978, 102334147, 165580133
OFFSET
0,2
COMMENTS
The a(n+1) (terms doubled) are the Kn15 sums of the Fibonacci(n) triangle A104763. See A180662 for information about these knight and other chess sums.
FORMULA
a(n) = F(n+6) - F(6) with F = A000045.
a(n) = a(n-1) + a(n-2) + 8 for n>1, a(0)=0, a(1)=5, and where 8 = F(6).
From Colin Barker, Apr 13 2012: (Start)
G.f.: x*(5 + 3*x)/((1 - x)*(1 - x - x^2)).
a(n) = 2*a(n-1) - a(n-3). (End)
a(n) = (-8 + (2^(-n)*((1-sqrt(5))^n*(-9+4*sqrt(5)) + (1+sqrt(5))^n*(9+4*sqrt(5)))) / sqrt(5)). - Colin Barker, Apr 20 2017
MAPLE
nmax:=40: with(combinat): for n from 0 to nmax do a(n):=fibonacci(n+6)-fibonacci(6) od: seq(a(n), n=0..nmax);
MATHEMATICA
f[n_]:= Fibonacci[n+6] - Fibonacci[6]; Array[f, 40, 0] (* or *)
LinearRecurrence[{2, 0, -1}, {0, 5, 13}, 41] (* or *)
CoefficientList[Series[x(3x+5)/(x^3-2x+1), {x, 0, 40}], x] (* Robert G. Wilson v, Apr 11 2017 *)
PROG
(Magma) [Fibonacci(n+6)-Fibonacci(6): n in [0..40]]; // Vincenzo Librandi, Apr 24 2011
(PARI) for(n=1, 40, print(fibonacci(n+6)-fibonacci(6))); \\ Anton Mosunov, Mar 02 2017
(PARI) concat(0, Vec(x*(5+3*x)/((1-x)*(1-x-x^2)) + O(x^40))) \\ Colin Barker, Apr 20 2017
(Sage) [fibonacci(n+6)-8 for n in (0..40)] # G. C. Greubel, Jul 13 2019
(GAP) List([0..40], n-> Fibonacci(n+6)-8); # G. C. Greubel, Jul 13 2019
CROSSREFS
Cf. A000045.
Cf. A131524 (Kn11), A001911 (Kn12), A006327 (Kn13), A167616 (Kn14), A180671 (Kn15), A180672 (Kn16), A180673 (Kn17), A180674 (Kn18).
Sequence in context: A008778 A299277 A014813 * A211637 A256111 A322417
KEYWORD
nonn,easy
AUTHOR
Johannes W. Meijer, Sep 21 2010
STATUS
approved