login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Fibonacci(n+6) - Fibonacci(6).
5

%I #46 Nov 16 2024 11:59:25

%S 0,5,13,26,47,81,136,225,369,602,979,1589,2576,4173,6757,10938,17703,

%T 28649,46360,75017,121385,196410,317803,514221,832032,1346261,2178301,

%U 3524570,5702879,9227457,14930344,24157809,39088161,63245978,102334147,165580133

%N a(n) = Fibonacci(n+6) - Fibonacci(6).

%C The a(n+1) (terms doubled) are the Kn15 sums of the Fibonacci(n) triangle A104763. See A180662 for information about these knight and other chess sums.

%H Vincenzo Librandi, <a href="/A180671/b180671.txt">Table of n, a(n) for n = 0..280</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-1).

%F a(n) = F(n+6) - F(6) with F = A000045.

%F a(n) = a(n-1) + a(n-2) + 8 for n>1, a(0)=0, a(1)=5, and where 8 = F(6).

%F From _Colin Barker_, Apr 13 2012: (Start)

%F G.f.: x*(5 + 3*x)/((1 - x)*(1 - x - x^2)).

%F a(n) = 2*a(n-1) - a(n-3). (End)

%F a(n) = (-8 + (2^(-n)*((1-sqrt(5))^n*(-9+4*sqrt(5)) + (1+sqrt(5))^n*(9+4*sqrt(5)))) / sqrt(5)). - _Colin Barker_, Apr 20 2017

%p nmax:=40: with(combinat): for n from 0 to nmax do a(n):=fibonacci(n+6)-fibonacci(6) od: seq(a(n),n=0..nmax);

%t f[n_]:= Fibonacci[n+6] - Fibonacci[6]; Array[f, 40, 0] (* or *)

%t LinearRecurrence[{2,0,-1}, {0,5,13}, 41] (* or *)

%t CoefficientList[Series[x(3x+5)/(x^3-2x+1), {x,0,40}], x] (* _Robert G. Wilson v_, Apr 11 2017 *)

%o (Magma) [Fibonacci(n+6)-Fibonacci(6): n in [0..40]]; // _Vincenzo Librandi_, Apr 24 2011

%o (PARI) for(n=1,40,print(fibonacci(n+6)-fibonacci(6))); \\ _Anton Mosunov_, Mar 02 2017

%o (PARI) concat(0, Vec(x*(5+3*x)/((1-x)*(1-x-x^2)) + O(x^40))) \\ _Colin Barker_, Apr 20 2017

%o (Sage) [fibonacci(n+6)-8 for n in (0..40)] # _G. C. Greubel_, Jul 13 2019

%o (GAP) List([0..40], n-> Fibonacci(n+6)-8); # _G. C. Greubel_, Jul 13 2019

%Y Cf. A000045.

%Y Cf. A131524 (Kn11), A001911 (Kn12), A006327 (Kn13), A167616 (Kn14), A180671 (Kn15), A180672 (Kn16), A180673 (Kn17), A180674 (Kn18).

%K nonn,easy

%O 0,2

%A _Johannes W. Meijer_, Sep 21 2010