login
A027968
a(n) = T(n, 2*n-6), T given by A027960.
3
1, 4, 11, 29, 73, 171, 370, 743, 1397, 2482, 4201, 6821, 10685, 16225, 23976, 34591, 48857, 67712, 92263, 123805, 163841, 214103, 276574, 353511, 447469, 561326, 698309, 862021, 1056469, 1286093, 1555796, 1870975, 2237553
OFFSET
3,2
FORMULA
From Ralf Stephan, Feb 07 2004: (Start)
G.f.: x^3*(1 -3*x +4*x^2 +x^3 -4*x^4 +3*x^5 -x^6)/(1-x)^7.
a(n) = A027969(n+1) - A027969(n). (End)
From G. C. Greubel, Jul 01 2019: (Start)
a(n) = (-7920 +7548*n -3176*n^2 +735*n^3 -65*n^4 -3*n^5 +n^6)/720.
E.g.f.: (7920 +2880*x +360*x^2 -(7920 -5040*x +1440*x^2 -360*x^3 +30*x^4 -12*x^5 -x^6)*exp(x))/6!. (End)
MATHEMATICA
Table[(-7920 +7548*n -3176*n^2 +735*n^3 -65*n^4 -3*n^5 +n^6)/720, {n, 3, 40}] (* G. C. Greubel, Jul 01 2019 *)
PROG
(PARI) for(n=3, 40, print1((-7920 +7548*n -3176*n^2 +735*n^3 -65*n^4 -3*n^5 +n^6)/720, ", ")) \\ G. C. Greubel, Jul 01 2019
(Magma) [(-7920 +7548*n -3176*n^2 +735*n^3 -65*n^4 -3*n^5 +n^6)/720: n in [3..40]]; // G. C. Greubel, Jul 01 2019
(Sage) [(-7920 +7548*n -3176*n^2 +735*n^3 -65*n^4 -3*n^5 +n^6)/720 for n in (3..40)] # G. C. Greubel, Jul 01 2019
(GAP) List([3..40], n-> (-7920 +7548*n -3176*n^2 +735*n^3 -65*n^4 -3*n^5 +n^6)/720) # G. C. Greubel, Jul 01 2019
CROSSREFS
A column of triangle A026998.
Sequence in context: A131046 A109803 A262280 * A027970 A027972 A098149
KEYWORD
nonn
STATUS
approved