login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A027972 T(n, 2n-10), T given by A027960. 2
1, 4, 11, 29, 76, 199, 518, 1324, 3278, 7784, 17643, 38138, 78753, 155793, 296248, 543333, 964239, 1660748, 2783499, 4550843, 7273394, 11385571, 17485634, 26385946, 39175444, 57296576, 82639259, 117654736, 165492559 (list; graph; refs; listen; history; text; internal format)
OFFSET

5,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 5..1000

Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).

FORMULA

Sequence satisfies a 10-degree polynomial approximating A002878.

G.f.: x^5*(1 -7*x +22*x^2 -37*x^3 +32*x^4 +x^5 -32*x^6 +37*x^7 -22*x^8 +7*x^9 -x^10)/(1-x)^11. - R. J. Mathar, Jan 30 2011

a(n) = -76 +183941*n/2520 +386899*n^3/36288 -1747657*n^2/50400 -831241*n^4/362880 +11887*n^5/34560 -5807*n^6/172800 +41*n^7/24192 +n^8/60480 -n^9/145152 +n^10/3628800. - R. J. Mathar, Jan 30 2011

MAPLE

seq(coeff(series(x^5*(1 -7*x +22*x^2 -37*x^3 +32*x^4 +x^5 -32*x^6 +37*x^7 -22*x^8 +7*x^9 -x^10)/(1-x)^11, x, n+1), x, n), n = 5..40); # G. C. Greubel, Sep 26 2019

MATHEMATICA

Drop[CoefficientList[Series[x^5*(1 -7*x +22*x^2 -37*x^3 +32*x^4 +x^5 -32*x^6 +37*x^7 -22*x^8 +7*x^9 -x^10)/(1-x)^11, {x, 0, 40}], x], 5] (* G. C. Greubel, Sep 26 2019 *)

PROG

(PARI) my(x='x+O('x^40)); Vec(x^5*(1 -7*x +22*x^2 -37*x^3 +32*x^4 +x^5 -32*x^6 +37*x^7 -22*x^8 +7*x^9 -x^10)/(1-x)^11) \\ G. C. Greubel, Sep 26 2019

(MAGMA) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x^5*(1- 7*x+22*x^2-37*x^3+32*x^4+x^5-32*x^6+37*x^7-22*x^8+7*x^9 -x^10)/(1-x)^11 )); // G. C. Greubel, Sep 26 2019

(Sage)

def A027972_list(prec):

    P.<x> = PowerSeriesRing(ZZ, prec)

    return P( x^5*(1 -7*x +22*x^2 -37*x^3 +32*x^4 +x^5 -32*x^6 +37*x^7 -22*x^8 +7*x^9 -x^10)/(1-x)^11 ).list()

a=A027972_list(40); a[5:] # G. C. Greubel, Sep 26 2019

(GAP) a:=[1, 4, 11, 29, 76, 199, 518, 1324, 3278, 7784, 17643];; for n in [12..40] do a[n]:=11*a[n-1]-55*a[n-2]+165*a[n-3]-330*a[n-4]+462*a[n-5] -462*a[n-6]+330*a[n-7]-165*a[n-8]+55*a[n-9]-11*a[n-10]+a[n-11]; od; a; # G. C. Greubel, Sep 26 2019

CROSSREFS

A column of triangle A026998.

Sequence in context: A262280 A027968 A027970 * A098149 A002878 A124861

Adjacent sequences:  A027969 A027970 A027971 * A027973 A027974 A027975

KEYWORD

nonn

AUTHOR

Clark Kimberling

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 26 23:47 EDT 2020. Contains 337378 sequences. (Running on oeis4.)