OFFSET
1,2
EXAMPLE
G.f.: A(x) = x + 4*x^2 + 11*x^3 + 29*x^4 + 76*x^5 + 207*x^6 + 592*x^7 + 1780*x^8 + 5617*x^9 + 18365*x^10 + 61465*x^11 + 209173*x^12 + ...
where
1 = (1 + A(x)) - x*((1+x) + A(x))^2 + x^3*((1+x)^2 + A(x))^3 - x^6*((1+x)^3 + A(x))^4 + x^10*((1+x)^4 + A(x))^5 - x^15*((1+x)^5 + A(x))^6 + ...
SPECIFIC VALUES.
At x = -1/2, 1 = Sum_{n>=0} (-1)^n * (-1/2)^(n*(n+1)/2) * (1/2^n + a)^(n+1), where a = 0.0849569238946083173319941875462909358145...
At x = 1/2, 1 = Sum_{n>=0} (-1)^n * (1/2)^(n*(n+1)/2) * ((3/2)^n + a)^(n+1), where a = 12.925265220825824331002181448511410832160...
PROG
(PARI) {a(n) = A=[1]; for(i=1, n, A = concat(A, 0);
A[#A] = -polcoeff( sum(m=0, sqrtint(2*#A)+1, (-1)^m * x^(m*(m+1)/2)*((1+x +x*O(x^#A))^m + x*Ser(A))^(m+1) ), #A) ); A[n]}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 09 2021
STATUS
approved