login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262321
Number of ways to select a subset s containing n from {1,...,n} and then partition s into blocks of equal size.
2
1, 1, 3, 7, 18, 43, 118, 337, 1025, 3479, 13056, 48817, 199477, 898135, 4051128, 18652459, 93872040, 492132207, 2658676056, 14841915049, 84757413959, 517609038551, 3384739112196, 21742333893177, 141230605251082, 1001795869162783, 7387581072984938
OFFSET
0,3
COMMENTS
a(0) = 1 by convention.
LINKS
FORMULA
E.g.f.: A(x) - Integral_{x} A(x) dx, with A(x) = e.g.f. of A262320.
EXAMPLE
a(0) = 1: {}.
a(1) = 1: 1.
a(2) = 3: 2, 12, 1|2.
a(3) = 7: 3, 13, 1|3, 23, 2|3, 123, 1|2|3.
a(4) = 18: 4, 14, 1|4, 24, 2|4, 34, 3|4, 124, 1|2|4, 134, 1|3|4, 234, 2|3|4, 1234, 12|34, 13|24, 14|23, 1|2|3|4.
MAPLE
b:= proc(n) option remember; n!*`if`(n=0, 1,
add(1/(d!*(n/d)!^d), d=numtheory[divisors](n)))
end:
a:= n-> add(b(k)*binomial(n-1, k-1), k=0..n):
seq(a(n), n=0..30);
MATHEMATICA
b[n_] := b[n] = n!*If[n == 0, 1, DivisorSum[n, 1/(#!*(n/#)!^#)&]];
a[n_] := Sum[b[k]*Binomial[n-1, k-1], {k, 0, n}];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 28 2017, translated from Maple *)
CROSSREFS
First differences of A262320.
Sequence in context: A129921 A036670 A369200 * A182995 A027967 A181306
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 18 2015
STATUS
approved