The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A027966 T(n, 2*n-4), T given by A027960. 3

%I

%S 1,4,11,26,54,101,174,281,431,634,901,1244,1676,2211,2864,3651,4589,

%T 5696,6991,8494,10226,12209,14466,17021,19899,23126,26729,30736,35176,

%U 40079,45476,51399,57881,64956,72659,81026,90094,99901,110486,121889,134151,147314,161421,176516,192644

%N T(n, 2*n-4), T given by A027960.

%H G. C. Greubel, <a href="/A027966/b027966.txt">Table of n, a(n) for n = 2..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).

%F From _Ralf Stephan_, Feb 07 2004: (Start)

%F G.f.: x^2*(1 - x + x^2 + x^3 - x^4)/(1-x)^5.

%F Differences of A027967. (End)

%F From _G. C. Greubel_, Jun 30 2019: (Start)

%F a(n) = (n^4 + 2*n^3 - 25*n^2 + 94*n - 96)/24.

%F E.g.f.: (96 +24*x - (96 - 72*x + 12*x^2 - 8*x^3 - x^4)*exp(x))/24. (End)

%t LinearRecurrence[{5,-10,10,-5,1}, {1,4,11,26,54}, 50] (* _G. C. Greubel_, Jun 30 2019 *)

%o (PARI) vector(50, n, n++; (n^4+2*n^3-25*n^2+94*n-96)/24) \\ _G. C. Greubel_, Jun 30 2019

%o (MAGMA) [(n^4+2*n^3-25*n^2+94*n-96)/24: n in [2..50]]; // _G. C. Greubel_, Jun 30 2019

%o (Sage) [(n^4+2*n^3-25*n^2+94*n-96)/24 for n in (2..50)] # _G. C. Greubel_, Jun 30 2019

%o (GAP) List([2..50], n-> (n^4+2*n^3-25*n^2+94*n-96)/24) # _G. C. Greubel_, Jun 30 2019

%Y A column of triangle A026998.

%K nonn

%O 2,2

%A _Clark Kimberling_

%E Terms a(31) onward added by _G. C. Greubel_, Jun 30 2019

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 14 08:08 EDT 2020. Contains 336480 sequences. (Running on oeis4.)