|
|
A093803
|
|
Greatest odd proper divisor of n; a(1)=1.
|
|
2
|
|
|
1, 1, 1, 1, 1, 3, 1, 1, 3, 5, 1, 3, 1, 7, 5, 1, 1, 9, 1, 5, 7, 11, 1, 3, 5, 13, 9, 7, 1, 15, 1, 1, 11, 17, 7, 9, 1, 19, 13, 5, 1, 21, 1, 11, 15, 23, 1, 3, 7, 25, 17, 13, 1, 27, 11, 7, 19, 29, 1, 15, 1, 31, 21, 1, 13, 33, 1, 17, 23, 35, 1, 9, 1, 37, 25, 19, 11, 39, 1, 5, 27, 41, 1, 21, 17
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,6
|
|
LINKS
|
Antti Karttunen, Table of n, a(n) for n = 1..10000
|
|
FORMULA
|
a(n) <= A000265(n);
a(n) = n / (A020639(n)*(n mod 2) + A006519(n)*(1 - n mod 2)).
a(n) = A000265(A032742(n)). - Antti Karttunen, Aug 12 2017
|
|
MAPLE
|
with(numtheory): a := n -> max(1, op(select(k->type(k, odd), divisors(n) minus {n}))): seq(a(n), n=1..85); # Peter Luschny, Feb 02 2015
|
|
MATHEMATICA
|
Join[{1}, Table[Max[Select[Most[Divisors[n]], OddQ]], {n, 2, 90}]] (* Harvey P. Dale, Apr 10 2012 *)
|
|
PROG
|
(Scheme) (define (A093803 n) (/ n (if (odd? n) (A020639 n) (A006519 n)))) ;; Antti Karttunen, Aug 12 2017
|
|
CROSSREFS
|
Cf. A000265, A005408, A006519, A006530, A020639, A032742, A078701.
Sequence in context: A077308 A075001 A252840 * A285175 A016599 A079650
Adjacent sequences: A093800 A093801 A093802 * A093804 A093805 A093806
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Reinhard Zumkeller, May 19 2004
|
|
STATUS
|
approved
|
|
|
|