The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A107862 Triangle, read by rows, where T(n,k) = C(n*(n-1)/2 - k*(k-1)/2 + n-k, n-k). 13
 1, 1, 1, 3, 2, 1, 20, 10, 3, 1, 210, 84, 21, 4, 1, 3003, 1001, 220, 36, 5, 1, 54264, 15504, 3060, 455, 55, 6, 1, 1184040, 296010, 53130, 7315, 816, 78, 7, 1, 30260340, 6724520, 1107568, 142506, 14950, 1330, 105, 8, 1, 886163135, 177232627, 26978328, 3262623, 324632, 27405, 2024, 136, 9, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Remarkably, the following matrix products are all equal to A107876: A107862^-1*A107867 = A107867^-1*A107870 = A107870^-1*A107873. LINKS G. C. Greubel, Rows n = 0..50 of the triangle, flattened FORMULA T(n,k) = binomial( (n-k)*(n+k+1)/2, n-k). - G. C. Greubel, Feb 19 2022 EXAMPLE Triangle begins: 1; 1, 1; 3, 2, 1; 20, 10, 3, 1; 210, 84, 21, 4, 1; 3003, 1001, 220, 36, 5, 1; 54264, 15504, 3060, 455, 55, 6, 1; 1184040, 296010, 53130, 7315, 816, 78, 7, 1; ... MATHEMATICA T[n_, k_]:= Binomial[(n-k)*(n+k+1)/2, n-k]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 19 2022 *) PROG (PARI) T(n, k)=binomial(n*(n-1)/2-k*(k-1)/2+n-k, n-k) (Magma) [Binomial(Floor((n-k)*(n+k+1)/2), n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 19 2022 (Sage) flatten([[binomial( (n-k)*(n+k+1)/2, n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 19 2022 CROSSREFS Cf. A014068 (column 0), A107863 (column 1), A099121 (column 2), A107865, A107867, A107870, A107876. Sequence in context: A136733 A117269 A291080 * A117265 A107727 A346743 Adjacent sequences: A107859 A107860 A107861 * A107863 A107864 A107865 KEYWORD nonn,tabl AUTHOR Paul D. Hanna, Jun 04 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 09:20 EST 2023. Contains 367600 sequences. (Running on oeis4.)