OFFSET
0,4
COMMENTS
E.g.f. of column 0 is F(x) = (3-sqrt(5-4*exp(x)))/2 since F(x) satisfies the characteristic equation: F - (F-1)^2 = exp(x). The matrix log of T is the integer triangle A117270.
FORMULA
T(n,k) = A052886(n-k)*C(n,k) for n>k, with T(n,n) = 1.
EXAMPLE
Triangle T begins:
1;
1,1;
3,2,1;
19,9,3,1;
207,76,18,4,1;
3211,1035,190,30,5,1;
64383,19266,3105,380,45,6,1;
1581259,450681,67431,7245,665,63,7,1; ...
where (T-I)^2 =
0;
0,0;
2,0,0;
18,6,0,0;
206,72,12,0,0;
3210,1030,180,20,0,0;
64382,19260,3090,360,30,0,0; ...
and T - (T-I)^2 = Pascal's triangle.
PROG
(PARI) {T(n, k)=local(C=matrix(n+1, n+1, r, c, if(r>=c, binomial(r-1, c-1))), M=C); for(i=1, n+1, M=(M-M^0)^2+C); return(M[n+1, k+1])}
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Mar 05 2006
STATUS
approved