OFFSET
0,4
COMMENTS
More generally, if a lower triangular matrix T to the power p is given by: [T^p](n,k) = C(r,n-k)*p^(n-k)*q^(n*(n-1)/2-k*(k-1)/2) then, for all m, [T^m](n,k) = [prod_{j=0..n-k-1}(m*r-p*j)]/(n-k)!*q^(n*(n-1)/2-k*(k-1)/2) for n>k>=0, with T(n,n) = 1. This triangle results when m=1, p=-2, q=2, r=1.
FORMULA
T(n,k) = A086229(n-k)*2^((n-k)*k). T(n,k) = 2^(n*(n-1)/2-k*(k-1)/2)/(n-k)!*prod_{j=0..n-k-1}(2*j+1) for n>k>=0, with T(n,n) = 1.
EXAMPLE
Triangle T begins:
1;
1,1;
3,2,1;
20,12,4,1;
280,160,48,8,1;
8064,4480,1280,192,16,1;
473088,258048,71680,10240,768,32,1;
56229888,30277632,8257536,1146880,81920,3072,64,1;
13495173120,7197425664,1937768448,264241152,18350080,655360,12288,128,1;
Matrix inverse square T^-2 has -2^(n+1) in the 2nd diagonal:
1;
-2,1;
0,-4,1;
0,0,-8,1;
0,0,0,-16,1;
0,0,0,0,-32,1;
0,0,0,0,0,-64,1; ...
PROG
(PARI) {T(n, k)=local(m=1, p=-2, q=2, r=1); prod(j=0, n-k-1, m*r-p*j)/(n-k)!*q^((n-k)*(n+k-1)/2)}
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Mar 14 2006
STATUS
approved