Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Mar 30 2012 18:36:56
%S 1,1,1,3,2,1,20,12,4,1,280,160,48,8,1,8064,4480,1280,192,16,1,473088,
%T 258048,71680,10240,768,32,1,56229888,30277632,8257536,1146880,81920,
%U 3072,64,1,13495173120,7197425664,1937768448,264241152,18350080,655360
%N Triangle T, read by rows, where matrix power T^-2 has -2^(n+1) in the secondary diagonal: [T^-2](n+1,n) = -2^(n+1), with all 1's in the main diagonal and zeros elsewhere.
%C More generally, if a lower triangular matrix T to the power p is given by: [T^p](n,k) = C(r,n-k)*p^(n-k)*q^(n*(n-1)/2-k*(k-1)/2) then, for all m, [T^m](n,k) = [prod_{j=0..n-k-1}(m*r-p*j)]/(n-k)!*q^(n*(n-1)/2-k*(k-1)/2) for n>k>=0, with T(n,n) = 1. This triangle results when m=1, p=-2, q=2, r=1.
%F T(n,k) = A086229(n-k)*2^((n-k)*k). T(n,k) = 2^(n*(n-1)/2-k*(k-1)/2)/(n-k)!*prod_{j=0..n-k-1}(2*j+1) for n>k>=0, with T(n,n) = 1.
%e Triangle T begins:
%e 1;
%e 1,1;
%e 3,2,1;
%e 20,12,4,1;
%e 280,160,48,8,1;
%e 8064,4480,1280,192,16,1;
%e 473088,258048,71680,10240,768,32,1;
%e 56229888,30277632,8257536,1146880,81920,3072,64,1;
%e 13495173120,7197425664,1937768448,264241152,18350080,655360,12288,128,1;
%e Matrix inverse square T^-2 has -2^(n+1) in the 2nd diagonal:
%e 1;
%e -2,1;
%e 0,-4,1;
%e 0,0,-8,1;
%e 0,0,0,-16,1;
%e 0,0,0,0,-32,1;
%e 0,0,0,0,0,-64,1; ...
%o (PARI) {T(n,k)=local(m=1,p=-2,q=2,r=1);prod(j=0,n-k-1,m*r-p*j)/(n-k)!*q^((n-k)*(n+k-1)/2)}
%Y Cf. A086229 (column 0), A117266 (row sums); variants: A117250 (p=q=2), A117252 (p=q=3), A117254 (p=q=4), A117256 (p=q=5), A117258 (p=2, q=4), A117260 (p=-1, q=2), A117262 (p=-1, q=3).
%K nonn,tabl
%O 0,4
%A _Paul D. Hanna_, Mar 14 2006