login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117256
Triangle T, read by rows, where matrix power T^5 has powers of 5 in the secondary diagonal: [T^5](n+1,n) = 5^(n+1), with all 1's in the main diagonal and zeros elsewhere.
8
1, 1, 1, -10, 5, 1, 750, -250, 25, 1, -328125, 93750, -6250, 125, 1, 779296875, -205078125, 11718750, -156250, 625, 1, -9741210937500, 2435302734375, -128173828125, 1464843750, -3906250, 3125, 1, 630569458007812500, -152206420898437500, 7610321044921875
OFFSET
0,4
COMMENTS
More generally, if a lower triangular matrix T to the power p is given by: [T^p](n,k) = C(r,n-k)*p^(n-k)*q^(n*(n-1)/2-k*(k-1)/2) then, for all m, [T^m](n,k) = [prod_{j=0..n-k-1}(m*r-p*j)]/(n-k)!*q^(n*(n-1)/2-k*(k-1)/2) for n>k>=0, with T(n,n) = 1. This triangle results when m=1, p=5, q=5, r=1.
FORMULA
T(n,k) = A117257(n-k)*5^((n-k)*k). T(n,k) = (-1)^(n-k)*5^(n*(n-1)/2-k*(k-1)/2)/(n-k)!*prod_{j=0..n-k-1}(5*j-1) for n>k>=0, with T(n,n) = 1.
EXAMPLE
Triangle T begins:
1;
1,1;
-10,5,1;
750,-250,25,1;
-328125,93750,-6250,125,1;
779296875,-205078125,11718750,-156250,625,1;
-9741210937500,2435302734375,-128173828125,1464843750,-3906250,3125,1;
Matrix power T^5 has powers of 5 in the 2nd diagonal:
1;
5,1;
0,25,1;
0,0,125,1;
0,0,0,625,1;
0,0,0,0,3125,1; ...
PROG
(PARI) {T(n, k)=local(m=1, p=5, q=5, r=1); prod(j=0, n-k-1, m*r-p*j)/(n-k)!*q^((n-k)*(n+k-1)/2)}
CROSSREFS
Cf. A117257 (column 0); variants: A117250 (p=q=2), A117252 (p=q=3), A117254 (p=q=4), A117258 (p=2, q=4), A117260 (p=-1, q=2), A117262 (p=-1, q=3), A117265 (p=-2, q=2).
Sequence in context: A317597 A357423 A320938 * A332837 A050020 A050136
KEYWORD
sign,tabl
AUTHOR
Paul D. Hanna, Mar 14 2006
STATUS
approved