OFFSET
0,5
COMMENTS
More generally, if a lower triangular matrix T to the power p is given by: [T^p](n,k) = C(r,n-k)*p^(n-k)*q^(n*(n-1)/2-k*(k-1)/2) then, for all m, [T^m](n,k) = [prod_{j=0..n-k-1}(m*r-p*j)]/(n-k)!*q^(n*(n-1)/2-k*(k-1)/2) for n>k>=0, with T(n,n) = 1. This triangle results when m=1, p=2, q=2, r=1.
FORMULA
T(n,k) = A117251(n-k)*2^((n-k)*k). T(n,k) = [prod_{j=0..n-k-1}(1-2*j)]/(n-k)!*2^(n*(n-1)/2 - k*(k-1)/2) for n>k>=0, with T(n,n) = 1.
EXAMPLE
Triangle T begins:
1;
1,1;
-1,2,1;
4,-4,4,1;
-40,32,-16,8,1;
896,-640,256,-64,16,1;
-43008,28672,-10240,2048,-256,32,1;
4325376,-2752512,917504,-163840,16384,-1024,64,1;
-899678208,553648128,-176160768,29360128,-2621440,131072,-4096,128,1;
Matrix square T^2 has powers of 2 in the 2nd diagonal:
1;
2,1;
0,4,1;
0,0,8,1;
0,0,0,16,1;
0,0,0,0,32,1;
0,0,0,0,0,64,1; ...
PROG
(PARI) {T(n, k)=local(m=1, p=2, q=2, r=1); prod(j=0, n-k-1, m*r-p*j)/(n-k)!*q^((n-k)*(n+k-1)/2)}
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Paul D. Hanna, Mar 14 2006
STATUS
approved