OFFSET
0,4
COMMENTS
More generally, if a lower triangular matrix T to the power p is given by: [T^p](n,k) = C(r,n-k)*p^(n-k)*q^(n*(n-1)/2-k*(k-1)/2) then, for all m, [T^m](n,k) = [prod_{j=0..n-k-1}(m*r-p*j)]/(n-k)!*q^(n*(n-1)/2-k*(k-1)/2) for n>k>=0, with T(n,n) = 1. This triangle results when m=1, p=-1, q=3, r=1.
FORMULA
T(n,k) = 3^(n*(n-1)/2 - k*(k-1)/2).
EXAMPLE
Triangle T begins:
1;
1,1;
3,3,1;
27,27,9,1;
729,729,243,27,1;
59049,59049,19683,2187,81,1;
14348907,14348907,4782969,531441,19683,243,1;
10460353203,10460353203,3486784401,387420489,14348907,177147,729,1;
Matrix inverse T^-1 has -3^n in the 2nd diagonal:
1,
-1,1,
0,-3,1,
0,0,-9,1,
0,0,0,-27,1,
0,0,0,0,-81,1,
0,0,0,0,0,-243,1, ...
PROG
(PARI) {T(n, k)=local(m=1, p=-1, q=3, r=1); prod(j=0, n-k-1, m*r-p*j)/(n-k)!*q^((n-k)*(n+k-1)/2)}
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Mar 14 2006
STATUS
approved