login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259876
Triangle of numbers S(n,k) (0 <= k <= n) arising in the enumeration of interval orders without duplicated holdings.
0
1, 1, -1, 3, -3, 1, 21, -21, 7, -1, 315, -315, 105, -15, 1, 9765, -9765, 3255, -465, 31, -1, 615195, -615195, 205065, -29295, 1953, -63, 1, 78129765, -78129765, 26043255, -3720465, 248031, -8001, 127, -1, 19923090075, -19923090075, 6641030025, -948718575, 63247905, -2040255, 32385, -255, 1
OFFSET
0,4
REFERENCES
T. L. Greenough, Enumeration of interval orders without duplicated holdings, Preprint, circa 1976.
LINKS
T. L. Greenough, Enumeration of interval orders without duplicated holdings, Preprint, circa 1976. [Annotated scanned copy]
T. L. Greenough, Enumeration of interval orders without duplicated holdings, Notices of the AMS, Vol 23-2, February 1976, Issue 168, pages A-314 and A-315. [Mentions this paper]
FORMULA
T(n,k) = qfactorial(n)/qfactorial(k)*(-1)^(k), n>=k, where qfactorial(n) is A005329. - Vladimir Kruchinin, Feb 17 2020
EXAMPLE
Triangle begins:
1;
1, -1;
3, -3, 1;
21, -21, 7, -1;
315, -315, 105, -15, 1;
9765, -9765, 3255, -465, 31, -1;
...
CROSSREFS
Row sums give A005327.
Column k=0 gives A005329.
Main diagonal gives A033999.
T(n+1,n) gives A225883(n+1).
Sequence in context: A111840 A174031 A228859 * A276402 A318110 A117262
KEYWORD
sign,tabl
AUTHOR
N. J. A. Sloane, Jul 09 2015
EXTENSIONS
More terms from Alois P. Heinz, Feb 17 2020
STATUS
approved