The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A228859 Triangular array read by rows. T(n,k) is the number of labeled bipartite graphs on n nodes having exactly k connected components; n>=1, 1<=k<=n. 1
 1, 1, 1, 3, 3, 1, 19, 15, 6, 1, 195, 125, 45, 10, 1, 3031, 1545, 480, 105, 15, 1, 67263, 27307, 7035, 1400, 210, 21, 1, 2086099, 668367, 140098, 24045, 3430, 378, 28, 1, 89224635, 22427001, 3746925, 536214, 68355, 7434, 630, 36, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS The Bell transform of A001832(n+1) (without column 0). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 21 2016 LINKS FORMULA E.g.f.: sqrt(A(x)^y) where A(x) is the e.g.f. for A047863. Sum_{k=1..n} T(n,k)*2^k = A047863(n). EXAMPLE 1, 1, 1, 3, 3, 1, 19, 15, 6, 1, 195, 125, 45, 10, 1, 3031, 1545, 480, 105, 15, 1, MATHEMATICA nn=9; f[x_]:=Sum[Sum[Binomial[n, k]2^(k(n-k)), {k, 0, n}]x^n/n!, {n, 0, nn}]; Map[Select[#, #>0&]&, Drop[Range[0, nn]!CoefficientList[Series[Exp[y Log[f[x]]/2], {x, 0, nn}], {x, y}], 1]]//Grid PROG (Sage) # uses[bell_matrix from A264428, A001832] # Adds 1, 0, 0, 0, ... as column 0 to the triangle. bell_matrix(lambda n: A001832(n+1), 8) # Peter Luschny, Jan 21 2016 CROSSREFS Row sums are A047864. Column 1 is A001832. Cf. A047863. Sequence in context: A108391 A111840 A174031 * A259876 A276402 A318110 Adjacent sequences:  A228856 A228857 A228858 * A228860 A228861 A228862 KEYWORD nonn,tabl AUTHOR Geoffrey Critzer, Sep 05 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 20:51 EDT 2022. Contains 354092 sequences. (Running on oeis4.)