login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228858
Let A(x,y,z) denote the integer area A of the triangle with integer side lengths (x,y,z). a(n) is the smallest area such that there exist exactly n distinct triangles (x_i, y_i, z_i) satisfying A(x_1, y_1, z_1) = A(x_2, y_2, z_2) = ... = A(x_n, y_n, z_n).
1
6, 12, 126, 60, 240, 210, 1080, 336, 1260, 924, 2016, 2640, 7980, 6930, 420, 2520, 840, 3696, 10080, 5460, 3360
OFFSET
1,1
COMMENTS
The area A of a triangle whose sides have lengths x, y, and z is given by A188158. The area is given by Heron's formula: A = sqrt(s*(s-a)*(s-b)*(s-c)), where s = (a+b+c)/2. The Maple program examines all triangles having longest side <= 600.
Conjecture: there exists an integer corresponding to the common area of exactly n distinct triangles (x_i, y_i, z_i) for i = 1,2,...,n such that A(x_1, y_1, z_1) = A(x_2, y_2, z_2) = ... = A(x_n, y_n, z_n) for n = 1, 2, ...
LINKS
Eric Weisstein's World of Mathematics, Triangle
EXAMPLE
a(6) = 210 because there exists exactly 6 triangles with the same area. We obtain:
(3,148,149) => A = sqrt(150*(150-3)*(150-148)*(150-149)) = 210;
(7,65,68) => A = sqrt(70*(70-7)*(70-65)*(70-68)) = 210;
(12,35,37) => A = sqrt(42*(42-12)*(42-35)*(42-37)) = 210;
(17,25,28) => A = sqrt(35*(35-17)*(35-25)*(35-28)) = 210;
(17,28,39) => A = sqrt(42*(42-17)*(42-28)*(42-39)) = 210;
(20,21,29) => A = sqrt(35*(35-20)*(35-21)*(35-29)) = 210.
MAPLE
with(numtheory):nn:=600:lst:={}:T:=array(1..30000):k:=0:for a from 1 to nn do: for b from a to nn do: for c from b to nn do:p:=(a+b+c)/2 : x:=p*(p-a)*(p-b)*(p-c): if x>0 then x1:=abs(x):s:=sqrt(x1) :else fi:if s=floor(s) then lst:=lst union {s}:k:=k+1:T[k]:=s:else fi:od:od:od:k1:=nops(lst):for n from 1 to 50 do:jj:=0:for i from 1 to k1 while(jj=0) do:ii:=0:for j from 1 to k while(jj=0) do:if lst[i]=T[j] then ii:=ii+1:else fi:od: if ii = n then jj:=1:printf ( "%d %d \n", n, lst[i]):else fi:od:od:
CROSSREFS
Sequence in context: A038515 A335735 A051586 * A102077 A102062 A164584
KEYWORD
nonn,hard
AUTHOR
Michel Lagneau, Sep 05 2013
STATUS
approved