login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228862
G.f. satisfies: x = A(x - A(x^2 - A(x^3 - A(x^4 - A(x^5 -...))))).
3
1, 1, 1, 2, 5, 11, 24, 58, 146, 365, 922, 2383, 6243, 16463, 43748, 117224, 316157, 857088, 2334700, 6388017, 17546354, 48361208, 133710567, 370744754, 1030649811, 2871950293, 8020308614, 22443012438, 62919001546, 176699520967, 497039125163, 1400236234543, 3950262035542
OFFSET
1,4
COMMENTS
The g.f. of A228863 equals the series reversion of the g.f. of this sequence.
LINKS
FORMULA
a(n) ~ c * d^n / n^(3/2), where d = 2.9489373... and c = 0.27314... - Vaclav Kotesovec, Sep 03 2017
EXAMPLE
G.f.: A(x) = x + x^2 + x^3 + 2*x^4 + 5*x^5 + 11*x^6 + 24*x^7 + 58*x^8 +...
Let G(x) be the series reversion of A(x) (cf. A228863), then
(1) G(x) = x - x^2 + x^3 - 2*x^4 + 3*x^5 - 4*x^6 + 6*x^7 - 10*x^8 + 18*x^9 - 35*x^10 + 71*x^11 - 147*x^12 + 303*x^13 - 616*x^14 + 1244*x^15 +...
(2) G(x - G(x)) = x^2 - x^3 + x^4 - x^5 + x^7 - x^8 + x^10 - x^11 + 3*x^13 - 10*x^14 + 17*x^15 - 14*x^16 - 6*x^17 + 38*x^18 +...
(3) G(x^2 - G(x - G(x))) = x^3 - x^4 + x^5 - x^6 + x^7 - 2*x^8 + 3*x^9 - 3*x^10 + 3*x^11 - 5*x^12 + 8*x^13 - 9*x^14 + 10*x^15 +...
(4) G(x^3 - G(x^2 - G(x - G(x)))) = x^4 - x^5 + x^6 - x^7 + x^8 - x^9 + x^11 - x^12 + x^13 - 2*x^14 + 2*x^15 - x^17 + x^18 - 3*x^19 + 4*x^20 +...
(5) G(x^4 - G(x^3 - G(x^2 - G(x - G(x))))) = x^5 - x^6 + x^7 - x^8 + x^9 - x^10 + x^11 - 2*x^12 + 3*x^13 - 3*x^14 + 3*x^15 - 4*x^16 + 5*x^17 +...
...
PROG
(PARI) {a(n)=local(A=x+x^2, G=x^(n+1)); for(i=1, n+1, A=serreverse(x-G+x^2*O(x^n)); G=x^(n+1); for(k=0, n-1, G=subst(A, x, x^(n-k+1)-G+x^2*O(x^n)))); polcoeff(A, n)}
for(n=1, 35, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 05 2013
STATUS
approved