login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. satisfies: x = A(x - A(x^2 - A(x^3 - A(x^4 - A(x^5 -...))))).
3

%I #13 Sep 03 2017 05:20:40

%S 1,1,1,2,5,11,24,58,146,365,922,2383,6243,16463,43748,117224,316157,

%T 857088,2334700,6388017,17546354,48361208,133710567,370744754,

%U 1030649811,2871950293,8020308614,22443012438,62919001546,176699520967,497039125163,1400236234543,3950262035542

%N G.f. satisfies: x = A(x - A(x^2 - A(x^3 - A(x^4 - A(x^5 -...))))).

%C The g.f. of A228863 equals the series reversion of the g.f. of this sequence.

%H Paul D. Hanna, <a href="/A228862/b228862.txt">Table of n, a(n) for n = 1..300</a>

%F a(n) ~ c * d^n / n^(3/2), where d = 2.9489373... and c = 0.27314... - _Vaclav Kotesovec_, Sep 03 2017

%e G.f.: A(x) = x + x^2 + x^3 + 2*x^4 + 5*x^5 + 11*x^6 + 24*x^7 + 58*x^8 +...

%e Let G(x) be the series reversion of A(x) (cf. A228863), then

%e (1) G(x) = x - x^2 + x^3 - 2*x^4 + 3*x^5 - 4*x^6 + 6*x^7 - 10*x^8 + 18*x^9 - 35*x^10 + 71*x^11 - 147*x^12 + 303*x^13 - 616*x^14 + 1244*x^15 +...

%e (2) G(x - G(x)) = x^2 - x^3 + x^4 - x^5 + x^7 - x^8 + x^10 - x^11 + 3*x^13 - 10*x^14 + 17*x^15 - 14*x^16 - 6*x^17 + 38*x^18 +...

%e (3) G(x^2 - G(x - G(x))) = x^3 - x^4 + x^5 - x^6 + x^7 - 2*x^8 + 3*x^9 - 3*x^10 + 3*x^11 - 5*x^12 + 8*x^13 - 9*x^14 + 10*x^15 +...

%e (4) G(x^3 - G(x^2 - G(x - G(x)))) = x^4 - x^5 + x^6 - x^7 + x^8 - x^9 + x^11 - x^12 + x^13 - 2*x^14 + 2*x^15 - x^17 + x^18 - 3*x^19 + 4*x^20 +...

%e (5) G(x^4 - G(x^3 - G(x^2 - G(x - G(x))))) = x^5 - x^6 + x^7 - x^8 + x^9 - x^10 + x^11 - 2*x^12 + 3*x^13 - 3*x^14 + 3*x^15 - 4*x^16 + 5*x^17 +...

%e ...

%o (PARI) {a(n)=local(A=x+x^2,G=x^(n+1));for(i=1,n+1,A=serreverse(x-G+x^2*O(x^n));G=x^(n+1);for(k=0,n-1,G=subst(A,x,x^(n-k+1)-G+x^2*O(x^n))));polcoeff(A,n)}

%o for(n=1,35,print1(a(n),", "))

%Y Cf. A228863, A228835, A228883.

%K nonn

%O 1,4

%A _Paul D. Hanna_, Sep 05 2013