|
|
A134527
|
|
G.f. A(x) satisfies: A(x) = Sum_{n>=0} [x*A(x)]^(2^n-1).
|
|
1
|
|
|
1, 1, 1, 2, 5, 11, 24, 58, 149, 385, 1001, 2652, 7140, 19384, 52944, 145590, 402949, 1121117, 3133255, 8793372, 24774557, 70045871, 198672464, 565144064, 1611946284, 4609140916, 13209415116, 37937455636, 109171460104, 314736939884, 908930799572, 2629120466966
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
Number of Dyck n-paths with all ascent lengths being 1 less than a power of 2. [David Scambler, May 07 2012]
|
|
LINKS
|
|
|
FORMULA
|
G.f.: A(x) = Series_Reversion{x/[Sum_{n>=0} x^(2^n-1)]}.
|
|
MAPLE
|
b:= proc(x, y, t) option remember; `if`(x<0 or y>x, 0,
`if`(x=0, 1, b(x-1, y+1, true)+`if`(t, add(
b(x-2^j+1, y-2^j+1, false), j=1..ilog2(y+1)), 0)))
end:
a:= n-> b(2*n, 0, true):
|
|
MATHEMATICA
|
f[x_, y_, d_] := f[x, y, d] = If[x < 0 || y < x, 0, If[x == 0 && y == 0, 1, f[x - 1, y, 0] + f[x, y - If[d == 0, 1, 2*d], If[d == 0, 1, 2*d]]]]; Table[f[n, n, 0], {n, 0, 28}] (* David Scambler, May 07 2012 *)
|
|
PROG
|
(PARI) a(n)=polcoeff(serreverse(x/sum(j=0, #binary(n), x^(2^j-1)+ x*O(x^n))), n)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|