login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A075864
G.f. satisfies A(x) = 1 + Sum_{n>=0} (x*A(x))^(2^n).
6
1, 1, 2, 4, 10, 26, 72, 204, 594, 1762, 5318, 16270, 50360, 157392, 496016, 1574432, 5028962, 16152194, 52133154, 169004450, 550036778, 1796512970, 5886709502, 19346204982, 63751851400, 210605429496, 697337388556, 2313871053172, 7692939444640, 25623793107344
OFFSET
0,3
COMMENTS
Number of Dyck n-paths with all ascent lengths being a power of 2. - David Scambler, May 07 2012
LINKS
FORMULA
G.f. A(x) satisfies x*A(x) = series_reversion( x / ( 1 + Sum_{k>=0} x^(2^k) ) ). - Joerg Arndt, Apr 01 2019
From Paul D. Hanna, Jul 12 2024: (Start)
G.f. A(x) = x*Sum_{n>=0} a(n)*x^n (offset 1) satisfies the following formulas.
(1) A(x)^2 = A( x*A(x)/(1-x) ).
(2) A(x)^4 = A( x*A(x)^3/(1 - x - x*A(x)) ).
(3) A(x)^8 = A( x*A(x)^7/(1 - x - x*A(x) - x*A(x)^3) ).
(4) A(x)^(2^n) = A( x*A(x)^(2^n-1) / (1 - x*Sum_{k=0..n-1} A(x)^(2^k-1)) ) for n >= 1.
The radius of convergence r and A(r) satisfy r = 1/(Sum_{n>=0} 2^n*A(r)^(2^n-1)) and A(r) = A( A(r)*r/(1-r) )^(1/2), where r = 0.285128929740568796881205193649402054331317007180873... and A(r) = 0.621954965556741102287309027445345554104820417676869...
(End)
EXAMPLE
G.f. (offset 0): A(x) = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 26*x^5 + 72*x^6 + 204*x^7 + 594*x^8 + 1762*x^9 + 5318*x^10 + ...
SPECIFIC VALUES.
The following values are for the g.f. at offset 1: A(x) = x + x^2 + 2*x^3 + 4*x^4 + 10*x^5 + 26*x^6 + 72*x^7 + 204*x^8 + ...
A(t) = 1/2 at t = 0.275266504782383938866239471561026684712237255315...
where 1/4 = A( (1/2)*t/(1-t) ) and t = (1/2)/(1 + Sum_{n>=0} 1/2^(2^n)).
A(t) = 1/3 at t = 0.228789618697442059759075468255467011039543924763...
where 1/9 = A( (1/3)*t/(1-t) ) and t = (1/3)/(1 + Sum_{n>=0} 1/3^(2^n)).
A(1/4) = 0.392935121163880589695619242847181861583875787578...
where A(1/4)^2 = A( (1/3)*A(1/4) ).
A(1/5) = 0.269480257065638376643289111191173593741789085897...
where A(1/5)^2 = A( (1/4)*A(1/5) ).
A(1/6) = 0.209130395397987995845331540196686970439063098884...
where A(1/6)^2 = A( (1/5)*A(1/6) ).
MAPLE
b:= proc(x, y, t) option remember; `if`(x<0 or y>x, 0,
`if`(x=0, 1, b(x-1, y+1, true)+`if`(t, add(
b(x-2^j, y-2^j, false), j=0..ilog2(y)), 0)))
end:
a:= n-> b(2*n, 0, true):
seq(a(n), n=0..32); # Alois P. Heinz, Apr 01 2019
MATHEMATICA
seq = {};
f[x_, y_, d_] :=
f[x, y, d] =
If[x < 0 || y < x , 0,
If[x == 0 && y == 0, 1,
f[x - 1, y, 0] + f[x, y - If[d == 0, 1, d], If[d == 0, 1, 2*d]]]];
For[n = 0, n <= 27, n++, seq = Append[seq, f[n, n, 0]]]; seq
(* David Scambler, May 07 2012 *)
A[_] = 0; m = 32;
Do[A[x_] = 1+Sum[(x A[x])^(2^n)+O[x]^m, {n, 0, Log[2, m]//Ceiling}], {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, May 20 2022 *)
PROG
(PARI) N=66; K=ceil(log(N)/log(2))+1; x='x+O('x^N); Vec(serreverse(x/(1 + sum(k=0, K, x^(2^k) ) ) ) ) \\ Joerg Arndt, Apr 01 2019
(PARI) {a(n) = my(A=[1], Ax);
for(i=1, n, A=concat(A, 0); Ax=x*Ser(A);
A[#A] = -polcoeff( Ax^2 - subst(Ax, x, x*Ax/(1-x) ), #A+1) ); A[n]}
for(n=1, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Jul 12 2024
CROSSREFS
Sequence in context: A149813 A149814 A125108 * A180023 A154835 A049145
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 15 2002
STATUS
approved