login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A134530
Matrix log of triangle A111636, where A111636(n,k) = (2^k)^(n-k)*C(n,k) for n>=k>=0.
2
0, 1, 0, -1, 4, 0, 5, -12, 12, 0, -79, 160, -96, 32, 0, 3377, -6320, 3200, -640, 80, 0, -362431, 648384, -303360, 51200, -3840, 192, 0, 93473345, -162369088, 72619008, -11325440, 716800, -21504, 448, 0, -56272471039, 95716705280, -41566486528, 6196822016, -362414080, 9175040, -114688, 1024, 0
OFFSET
0,5
FORMULA
T(n,k) = A134531(n-k)*(2^k)^(n-k)*C(n,k), where A134531 is column 0 and satisfies: G.f.: Sum_{n>=0} A134531(n)*x^n/[n!*2^(n*(n-1)/2)] = log(Sum_{n>=0}x^n/[n!*2^(n*(n-1)/2)]).
EXAMPLE
Triangle begins:
0,
1, 0;
-1, 4, 0;
5, -12, 12, 0;
-79, 160, -96, 32, 0;
3377, -6320, 3200, -640, 80, 0;
-362431, 648384, -303360, 51200, -3840, 192, 0;
93473345, -162369088, 72619008, -11325440, 716800, -21504, 448, 0; ...
Matrix exponentiation yields triangle A111636, which begins:
1;
1, 1;
1, 4, 1;
1, 12, 12, 1;
1, 32, 96, 32, 1;
1, 80, 640, 640, 80, 1; ...
PROG
(PARI) {T(n, k)=local(M=matrix(n+1, n+1, r, c, if(r>=c, 2^((c-1)*(r-c))*binomial(r-1, c-1))), L); L=sum(i=1, #M, -(M^0-M)^i/i); L[n+1, k+1]}
CROSSREFS
Cf. A134531 (column 0); related triangles: A111636, A117401; A011266.
Sequence in context: A064520 A267313 A108174 * A351571 A308678 A184365
KEYWORD
sign,tabl
AUTHOR
Paul D. Hanna, Oct 30 2007
STATUS
approved