login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134529
E.g.f. A(x) satisfies: x/(1-x)^2 = Sum_{n>=1} (1/n!)*Product_{j=0..n-1} A(2^j*x).
0
0, 1, 2, -8, -80, 1576, 43056, -4001376, -539274240, 230311875456, 169101315797760, -333305191377561600, -1205460382028665927680, 11038562078873652773729280, 187384458453666330945406187520, -7882186562442515869956999642009600
OFFSET
0,3
FORMULA
Define F(x,k,m) = Sum_{n>=1} (m*2^k)^n/n! * Product_{j=0..n-1} A(2^j*x), then F(x,k,m) is a series in x with integer coefficients for all integer m, k>=0.
EXAMPLE
E.g.f.: A(x) = x + 2x^2/2! - 8x^3/3! - 80x^4/4! + 1576x^5/5! + 43056x^6/6! + ...
where A(x) satisfies:
x/(1-x)^2 = A(x) + A(x)*A(2*x)/2! + A(x)*A(2*x)*A(2^2*x)/3! + A(x)*A(2*x)*A(2^2*x)*A(2^3*x)/4! + ...
PROG
(PARI) {a(n, q=2)=local(A=x/(1-x+x*O(x^n))^2); for(i=1, n, A=x/(1-x)^2/(1+sum(j=1, n, prod(k=1, j, subst(A, x, q^k*x))/(j+1)!))); return(n!*polcoeff(A, n))}
CROSSREFS
Sequence in context: A202999 A308088 A130530 * A289897 A134054 A323716
KEYWORD
sign
AUTHOR
Paul D. Hanna, Nov 23 2007
STATUS
approved