login
A134054
Row sums of triangle A134049.
6
1, 2, 8, 80, 2225, 184700, 48156025, 41008196507, 117576923431865, 1162187460377703220, 40342092016795699709297, 4989979910857539524339725455, 2225169577804416081963640015838617, 3611404965468239375529128539282974032063, 21500912257369373138838006883103647202061119889, 472700949365256437455861341996789835116478103190166869, 38594839432514958712997836406329517947410813633064955364162609, 11760334792404044930820367474465749383281197807007630470152427553813828
OFFSET
0,2
LINKS
EXAMPLE
Triangle T=A134049 has the following properties:
(1) [T^(2^m)](n,k) = T(n+m,k+m)/(2^m)^(n-k) for m>=0; and
(2) [T^( 1/2^(n-1) )](n,k) = (2^k)^(n-k) for n>=k>=0.
PROG
(PARI) {a(n)=local(M=Mat(1), L, R); for(i=1, n+3, L=sum(j=1, #M, -(M^0-M)^j/j); M=sum(j=0, #L, (L/2^(#L-1))^j/j!); R=matrix(#M+1, #M+1, r, c, if(r>=c, if(r<=#M, M[r, c], 2^((c-1)*(#M+1-c))))); M=R^(2^(#R-2)) ); sum(k=0, n, M[n+1, k+1])}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A130530 A134529 A289897 * A323716 A360806 A229865
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 04 2007
STATUS
approved