login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134049
Triangle T, read by rows, where T(n,k) = [T^(2^k)](n-k,0) * (2^k)^(n-k) for n>=k>=0 such that row n of the 2^(n-1)-th root of T consists solely of integers given by: [T^( 1/2^(n-1) )](n,k) = (2^k)^(n-k) for n>=0.
10
1, 1, 1, 3, 4, 1, 23, 40, 16, 1, 512, 1072, 576, 64, 1, 34939, 84736, 56064, 8704, 256, 1, 7637688, 20930240, 16261120, 3190784, 135168, 1024, 1, 5539372954, 16855075840, 14918594560, 3501457408, 191561728, 2129920, 4096, 1, 13703105571256, 45696508860928, 45120522420224, 12230958252032, 813938245632, 11856248832, 33816576, 16384, 1, 118149647382446899, 427467706869837824, 463647865862488064, 141682892446105600, 11040640699727872, 197960679817216, 745898246144, 538968064, 65536, 1
OFFSET
0,4
COMMENTS
Compare matrix power formulas to those of triangle A134484, where A134484(n,k) = 2^[n(n-1) - k(k-1)]*C(n,k).
FORMULA
The value of (2^m)-th matrix power of T at row n and column k is related to row n+m and column k+m of T by: [T^(2^m)](n,k) = T(n+m,k+m)/(2^m)^(n-k) for m>=0.
EXAMPLE
Below we illustrate this triangle and its 2 main properties:
(1) [T^(2^m)](n,k) = T(n+m,k+m)/(2^m)^(n-k) for m>=0;
(2) [T^( 1/2^(n-1) )](n,k) = (2^k)^(n-k) for n>=k>=0.
Triangle T begins:
1;
1, 1;
3, 4, 1;
23, 40, 16, 1;
512, 1072, 576, 64, 1;
34939, 84736, 56064, 8704, 256, 1;
7637688, 20930240, 16261120, 3190784, 135168, 1024, 1;
5539372954, 16855075840, 14918594560, 3501457408, 191561728, 2129920, 4096, 1;
13703105571256, 45696508860928, 45120522420224, 12230958252032, 813938245632, 11856248832, 33816576, 16384, 1;
118149647382446899, 427467706869837824, 463647865862488064, 141682892446105600, 11040640699727872, 197960679817216, 745898246144, 538968064, 65536, 1;
...
(1) Illustrate [T^(2^m)](n,k) = T(n+m,k+m)/(2^m)^(n-k) as follows.
Matrix square, T^2, begins:
1;
2, 1;
10, 8, 1;
134, 144, 32, 1;
5296, 7008, 2176, 128, 1;
654070, 1016320, 398848, 33792, 512, 1; ...
where [T^(2^1)](n,k) = T(n+1,k+1)/2^(n-k).
Matrix 4th power, T^4, begins:
1;
4, 1;
36, 16, 1;
876, 544, 64, 1;
63520, 49856, 8448, 256, 1;
14568940, 13677568, 2993152, 133120, 1024, 1; ...
where [T^(2^2)](n,k) = T(n+2,k+2)/4^(n-k).
Matrix 8th power, T^8, begins:
1;
8, 1;
136, 32, 1;
6232, 2112, 128, 1;
854848, 374144, 33280, 512, 1;
373259224, 198715392, 23156736, 528384, 2048, 1; ...
where [T^(2^3)](n,k) = T(n+3,k+3)/8^(n-k).
...
(2) Illustrate [T^( 1/2^(n-1) )](n,k) = (2^k)^(n-k) as follows.
Matrix square root, T^(1/2), begins:
1;
1/2, 1;
1, 2, 1; <== row 2: [T^(1/2^1)](2,k) = (2^k)^(2-k), k=0..2
9/2, 12, 8, 1;
58, 184, 160, 32, 1;
4475/2, 8192, 8576, 2304, 128, 1;
269828, 1118048, 1355776, 448512, 34816, 512, 1; ...
Matrix 4th root, T^(1/4), begins:
1;
1/4, 1;
3/8, 1, 1;
1, 4, 4, 1; <== row 3: [T^(1/2^2)](3,k) = (2^k)^(3-k), k=0..3
15/2, 36, 48, 16, 1;
667/4, 928, 1472, 640, 64, 1;
11180, 71600, 131072, 68608, 9216, 256, 1; ...
Matrix 8th root, T^(1/8), begins:
1;
1/8, 1;
5/32, 1/2, 1;
1/4, 3/2, 2, 1;
1, 8, 16, 8, 1; <== row 4: [T^(1/2^3)](4,k) = (2^k)^(4-k), k=0..4
107/8, 120, 288, 192, 32, 1;
977/2, 5336, 14848, 11776, 2560, 128, 1; ...
Matrix 16th root, T^(1/8), begins:
1;
1/16, 1;
9/128, 1/4, 1;
9/128, 5/8, 1, 1;
11/128, 2, 6, 4, 1;
1, 16, 64, 64, 16, 1; <== row 5: [T^(1/2^4)](5,k) = (2^k)^(5-k), k=0..5
139/8, 428, 1920, 2304, 768, 64, 1; ...
PROG
(PARI) {T(n, k)=local(M=Mat(1), L, R); for(i=1, n, L=sum(j=1, #M, -(M^0-M)^j/j); M=sum(j=0, #L, (L/2^(#L-1))^j/j!); R=matrix(#M+1, #M+1, r, c, if(r>=c, if(r<=#M, M[r, c], 2^((c-1)*(#M+1-c))))); M=R^(2^(#M-1)) ); M[n+1, k+1]}
for(n=0, 12, for(k=0, n, print1(T(n, k), ", ")); print(""))
CROSSREFS
Cf. columns: A134050, A134051, A134052, A134053; A134054 (row sums).
Cf. A134484.
Cf. A274477 (matrix log).
Sequence in context: A255905 A055325 A162498 * A224069 A157783 A123951
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Oct 04 2007, Oct 28 2007
STATUS
approved