login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134052
Column 0 of matrix 4th power of triangle A134049; a(n) = [A134049^4](n,0) = A134049(n+2,2)/4^n.
6
1, 4, 36, 876, 63520, 14568940, 11015752544, 28298819937896, 252647456547947232, 7975964313047992544460, 902538504812752048885181888, 370060584941821136890734642254392, 554686213433000991860635347227024504416, 3061850209996287672654225041045426728192508664, 62630012990169232252394969915444571881064532934837824, 4772629734773204290203117007836601388039453077250181639664976, 1361188462171480354335535757250707673963106696295682082795368090890432
OFFSET
0,2
LINKS
EXAMPLE
Triangle T=A134049 has the following properties:
(1) [T^(2^m)](n,k) = T(n+m,k+m)/(2^m)^(n-k) for m>=0; and
(2) [T^( 1/2^(n-1) )](n,k) = (2^k)^(n-k) for n>=k>=0.
PROG
(PARI) {a(n)=local(M=Mat(1), L, R); for(i=1, n+2, L=sum(j=1, #M, -(M^0-M)^j/j); M=sum(j=0, #L, (L/2^(#L-1))^j/j!); R=matrix(#M+1, #M+1, r, c, if(r>=c, if(r<=#M, M[r, c], 2^((c-1)*(#M+1-c))))); M=R^(2^(#R-2)) ); M[n+3, 3]/4^n}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A134049; columns: A134050, A134051, A134053; A134054 (row sums).
Sequence in context: A126152 A353996 A009446 * A127901 A061742 A136469
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 04 2007
STATUS
approved